| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.45v | Structured version Visualization version GIF version | ||
| Description: Version of 19.45 2107 with a dv condition, requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| 19.45v | ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.43 1810 | . 2 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) | |
| 2 | 19.9v 1896 | . . 3 ⊢ (∃𝑥𝜑 ↔ 𝜑) | |
| 3 | 2 | orbi1i 542 | . 2 ⊢ ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓)) |
| 4 | 1, 3 | bitri 264 | 1 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∨ wo 383 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-ex 1705 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |