| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3exbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for three existential quantifiers (deduction rule). (Contributed by NM, 1-May-1995.) |
| Ref | Expression |
|---|---|
| 3exbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧𝜓 ↔ ∃𝑥∃𝑦∃𝑧𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | exbidv 1850 | . 2 ⊢ (𝜑 → (∃𝑧𝜓 ↔ ∃𝑧𝜒)) |
| 3 | 2 | 2exbidv 1852 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧𝜓 ↔ ∃𝑥∃𝑦∃𝑧𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 |
| This theorem is referenced by: ceqsex6v 3248 euotd 4975 oprabid 6677 eloprabga 6747 eloprabi 7232 bnj981 31020 |
| Copyright terms: Public domain | W3C validator |