| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3oran | Structured version Visualization version GIF version | ||
| Description: Triple disjunction in terms of triple conjunction. (Contributed by NM, 8-Oct-2012.) |
| Ref | Expression |
|---|---|
| 3oran | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ioran 1056 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒)) | |
| 2 | 1 | con1bii 346 | . 2 ⊢ (¬ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒) ↔ (𝜑 ∨ 𝜓 ∨ 𝜒)) |
| 3 | 2 | bicomi 214 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 ∨ w3o 1036 ∧ w3a 1037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 |
| This theorem is referenced by: nolt02o 31845 nosupbnd1lem6 31859 dalawlem10 35166 |
| Copyright terms: Public domain | W3C validator |