| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ori | Structured version Visualization version GIF version | ||
| Description: Infer implication from triple disjunction. (Contributed by NM, 26-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3ori.1 | ⊢ (𝜑 ∨ 𝜓 ∨ 𝜒) |
| Ref | Expression |
|---|---|
| 3ori | ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioran 511 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
| 2 | 3ori.1 | . . . 4 ⊢ (𝜑 ∨ 𝜓 ∨ 𝜒) | |
| 3 | df-3or 1038 | . . . 4 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 4 | 2, 3 | mpbi 220 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ∨ 𝜒) |
| 5 | 4 | ori 390 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) → 𝜒) |
| 6 | 1, 5 | sylbir 225 | 1 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 383 ∧ wa 384 ∨ w3o 1036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 |
| This theorem is referenced by: rankxplim3 8744 |
| Copyright terms: Public domain | W3C validator |