| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4exmidOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete proof of 4exmid 997 as of 29-Oct-2021. (Contributed by David Abernethy, 28-Jan-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| 4exmidOLD | ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ∨ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmid 431 | . 2 ⊢ ((𝜑 ↔ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓)) | |
| 2 | dfbi3 994 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓))) | |
| 3 | xor 935 | . . 3 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑))) | |
| 4 | 2, 3 | orbi12i 543 | . 2 ⊢ (((𝜑 ↔ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓)) ↔ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ∨ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)))) |
| 5 | 1, 4 | mpbi 220 | 1 ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ∨ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 ∨ wo 383 ∧ wa 384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |