| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a1tru | Structured version Visualization version GIF version | ||
| Description: Anything implies ⊤. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.) |
| Ref | Expression |
|---|---|
| a1tru | ⊢ (𝜑 → ⊤) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1487 | . 2 ⊢ ⊤ | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → ⊤) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊤wtru 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-tru 1486 |
| This theorem is referenced by: disjprg 4648 euotd 4975 mptexgf 6485 elabrex 6501 riota5f 6636 ac6s6 33980 lhpexle1 35294 cnvtrucl0 37931 rfovcnvf1od 38298 elabrexg 39206 |
| Copyright terms: Public domain | W3C validator |