| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax12vOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete proof of ax12v2 2049 as of 24-Mar-2021. (Contributed by NM, 5-Aug-1993.) Removed dependencies on ax-10 2019 and ax-13 2246. (Revised by Jim Kingdon, 15-Dec-2017.) (Proof shortened by Wolf Lammen, 8-Dec-2019.) (Proof shortened by Wolf Lammen, 7-Mar-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| ax12vOLD | ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equtrr 1949 | . . 3 ⊢ (𝑦 = 𝑧 → (𝑥 = 𝑦 → 𝑥 = 𝑧)) | |
| 2 | ax-5 1839 | . . . . 5 ⊢ (𝜑 → ∀𝑧𝜑) | |
| 3 | ax-12 2047 | . . . . 5 ⊢ (𝑥 = 𝑧 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) | |
| 4 | 2, 3 | syl5 34 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
| 5 | 1 | imim1d 82 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((𝑥 = 𝑧 → 𝜑) → (𝑥 = 𝑦 → 𝜑))) |
| 6 | 5 | alimdv 1845 | . . . 4 ⊢ (𝑦 = 𝑧 → (∀𝑥(𝑥 = 𝑧 → 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 7 | 4, 6 | syl9r 78 | . . 3 ⊢ (𝑦 = 𝑧 → (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
| 8 | 1, 7 | syld 47 | . 2 ⊢ (𝑦 = 𝑧 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
| 9 | ax6evr 1942 | . 2 ⊢ ∃𝑧 𝑦 = 𝑧 | |
| 10 | 8, 9 | exlimiiv 1859 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |