| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ax6fromc10 | Structured version Visualization version GIF version | ||
| Description: Rederivation of axiom ax-6 1888 from ax-c7 34170, ax-c10 34171, ax-gen 1722 and propositional calculus. See axc10 2252 for the derivation of ax-c10 34171 from ax-6 1888. Lemma L18 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 14-May-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax6fromc10 | ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-c10 34171 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 ¬ 𝑥 = 𝑦) → ¬ ∀𝑥 ¬ 𝑥 = 𝑦) | |
| 2 | ax-c7 34170 | . . 3 ⊢ (¬ ∀𝑥 ¬ ∀𝑥 ¬ 𝑥 = 𝑦 → ¬ 𝑥 = 𝑦) | |
| 3 | 2 | con4i 113 | . 2 ⊢ (𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 ¬ 𝑥 = 𝑦) |
| 4 | 1, 3 | mpg 1724 | 1 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1481 |
| This theorem was proved from axioms: ax-mp 5 ax-3 8 ax-gen 1722 ax-c7 34170 ax-c10 34171 |
| This theorem is referenced by: equidqe 34207 |
| Copyright terms: Public domain | W3C validator |