| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axc5c7 | Structured version Visualization version GIF version | ||
| Description: Proof of a single axiom that can replace ax-c5 34168 and ax-c7 34170. See axc5c7toc5 34197 and axc5c7toc7 34198 for the rederivation of those axioms. (Contributed by Scott Fenton, 12-Sep-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axc5c7 | ⊢ ((∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥𝜑) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-c7 34170 | . 2 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) | |
| 2 | ax-c5 34168 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 3 | 1, 2 | ja 173 | 1 ⊢ ((∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥𝜑) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-c5 34168 ax-c7 34170 |
| This theorem is referenced by: axc5c7toc5 34197 axc5c7toc7 34198 |
| Copyright terms: Public domain | W3C validator |