| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axc711 | Structured version Visualization version GIF version | ||
| Description: Proof of a single axiom that can replace both ax-c7 34170 and ax-11 2034. See axc711toc7 34201 and axc711to11 34202 for the rederivation of those axioms. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axc711 | ⊢ (¬ ∀𝑥 ¬ ∀𝑦∀𝑥𝜑 → ∀𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-11 2034 | . . . . 5 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 2 | 1 | con3i 150 | . . . 4 ⊢ (¬ ∀𝑥∀𝑦𝜑 → ¬ ∀𝑦∀𝑥𝜑) |
| 3 | 2 | alimi 1739 | . . 3 ⊢ (∀𝑥 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥 ¬ ∀𝑦∀𝑥𝜑) |
| 4 | 3 | con3i 150 | . 2 ⊢ (¬ ∀𝑥 ¬ ∀𝑦∀𝑥𝜑 → ¬ ∀𝑥 ¬ ∀𝑥∀𝑦𝜑) |
| 5 | ax-c7 34170 | . 2 ⊢ (¬ ∀𝑥 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑦𝜑) | |
| 6 | 4, 5 | syl 17 | 1 ⊢ (¬ ∀𝑥 ¬ ∀𝑦∀𝑥𝜑 → ∀𝑦𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-11 2034 ax-c7 34170 |
| This theorem is referenced by: axc711toc7 34201 axc711to11 34202 |
| Copyright terms: Public domain | W3C validator |