Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bi23imp1 Structured version   Visualization version   GIF version

Theorem bi23imp1 38701
Description: Similar to 3imp 1256 except all but outermost implication are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.)
Hypothesis
Ref Expression
bi23imp1.1 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
Assertion
Ref Expression
bi23imp1 ((𝜑𝜓𝜒) → 𝜃)

Proof of Theorem bi23imp1
StepHypRef Expression
1 bi23imp1.1 . . 3 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
2 biimp 205 . . 3 ((𝜒𝜃) → (𝜒𝜃))
31, 2syl6bi 243 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
433imp 1256 1 ((𝜑𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator