Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-df-v Structured version   Visualization version   GIF version

Theorem bj-df-v 33016
Description: Alternate definition of the universal class. Actually, the current definition df-v 3202 should be proved from this one, and vex 3203 should be proved from this proposed definition together with bj-vexwv 32857, which would remove from vex 3203 dependency on ax-13 2246 (see also comment of bj-vexw 32855). (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-df-v V = {𝑥 ∣ ⊤}

Proof of Theorem bj-df-v
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2616 . 2 (V = {𝑥 ∣ ⊤} ↔ ∀𝑦(𝑦 ∈ V ↔ 𝑦 ∈ {𝑥 ∣ ⊤}))
2 vex 3203 . . 3 𝑦 ∈ V
3 tru 1487 . . . 4
43bj-vexwv 32857 . . 3 𝑦 ∈ {𝑥 ∣ ⊤}
52, 42th 254 . 2 (𝑦 ∈ V ↔ 𝑦 ∈ {𝑥 ∣ ⊤})
61, 5mpgbir 1726 1 V = {𝑥 ∣ ⊤}
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1483  wtru 1484  wcel 1990  {cab 2608  Vcvv 3200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-tru 1486  df-ex 1705  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator