| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rexvwv | Structured version Visualization version GIF version | ||
| Description: A weak version of rexv 3220 not using ax-ext 2602 (nor df-cleq 2615, df-clel 2618, df-v 3202) with an additional dv condition to avoid dependency on ax-13 2246 as well. See bj-ralvw 32865. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-rexvwv.1 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| bj-rexvwv | ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜓}𝜑 ↔ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2918 | . 2 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜓}𝜑 ↔ ∃𝑥(𝑥 ∈ {𝑦 ∣ 𝜓} ∧ 𝜑)) | |
| 2 | bj-rexvwv.1 | . . . . 5 ⊢ 𝜓 | |
| 3 | 2 | bj-vexwv 32857 | . . . 4 ⊢ 𝑥 ∈ {𝑦 ∣ 𝜓} |
| 4 | 3 | biantrur 527 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ {𝑦 ∣ 𝜓} ∧ 𝜑)) |
| 5 | 4 | exbii 1774 | . 2 ⊢ (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ {𝑦 ∣ 𝜓} ∧ 𝜑)) |
| 6 | 1, 5 | bitr4i 267 | 1 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜓}𝜑 ↔ ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ wa 384 ∃wex 1704 ∈ wcel 1990 {cab 2608 ∃wrex 2913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-sb 1881 df-clab 2609 df-rex 2918 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |