Detailed syntax breakdown of Definition df-algind
| Step | Hyp | Ref
| Expression |
| 1 | | cai 19540 |
. 2
class
AlgInd |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | vk |
. . 3
setvar 𝑘 |
| 4 | | cvv 3200 |
. . 3
class
V |
| 5 | 2 | cv 1482 |
. . . . 5
class 𝑤 |
| 6 | | cbs 15857 |
. . . . 5
class
Base |
| 7 | 5, 6 | cfv 5888 |
. . . 4
class
(Base‘𝑤) |
| 8 | 7 | cpw 4158 |
. . 3
class 𝒫
(Base‘𝑤) |
| 9 | | vf |
. . . . . . 7
setvar 𝑓 |
| 10 | | vv |
. . . . . . . . . 10
setvar 𝑣 |
| 11 | 10 | cv 1482 |
. . . . . . . . 9
class 𝑣 |
| 12 | 3 | cv 1482 |
. . . . . . . . . 10
class 𝑘 |
| 13 | | cress 15858 |
. . . . . . . . . 10
class
↾s |
| 14 | 5, 12, 13 | co 6650 |
. . . . . . . . 9
class (𝑤 ↾s 𝑘) |
| 15 | | cmpl 19353 |
. . . . . . . . 9
class
mPoly |
| 16 | 11, 14, 15 | co 6650 |
. . . . . . . 8
class (𝑣 mPoly (𝑤 ↾s 𝑘)) |
| 17 | 16, 6 | cfv 5888 |
. . . . . . 7
class
(Base‘(𝑣 mPoly
(𝑤 ↾s
𝑘))) |
| 18 | | cid 5023 |
. . . . . . . . 9
class
I |
| 19 | 18, 11 | cres 5116 |
. . . . . . . 8
class ( I
↾ 𝑣) |
| 20 | 9 | cv 1482 |
. . . . . . . . 9
class 𝑓 |
| 21 | | ces 19504 |
. . . . . . . . . . 11
class
evalSub |
| 22 | 11, 5, 21 | co 6650 |
. . . . . . . . . 10
class (𝑣 evalSub 𝑤) |
| 23 | 12, 22 | cfv 5888 |
. . . . . . . . 9
class ((𝑣 evalSub 𝑤)‘𝑘) |
| 24 | 20, 23 | cfv 5888 |
. . . . . . . 8
class (((𝑣 evalSub 𝑤)‘𝑘)‘𝑓) |
| 25 | 19, 24 | cfv 5888 |
. . . . . . 7
class ((((𝑣 evalSub 𝑤)‘𝑘)‘𝑓)‘( I ↾ 𝑣)) |
| 26 | 9, 17, 25 | cmpt 4729 |
. . . . . 6
class (𝑓 ∈ (Base‘(𝑣 mPoly (𝑤 ↾s 𝑘))) ↦ ((((𝑣 evalSub 𝑤)‘𝑘)‘𝑓)‘( I ↾ 𝑣))) |
| 27 | 26 | ccnv 5113 |
. . . . 5
class ◡(𝑓 ∈ (Base‘(𝑣 mPoly (𝑤 ↾s 𝑘))) ↦ ((((𝑣 evalSub 𝑤)‘𝑘)‘𝑓)‘( I ↾ 𝑣))) |
| 28 | 27 | wfun 5882 |
. . . 4
wff Fun ◡(𝑓 ∈ (Base‘(𝑣 mPoly (𝑤 ↾s 𝑘))) ↦ ((((𝑣 evalSub 𝑤)‘𝑘)‘𝑓)‘( I ↾ 𝑣))) |
| 29 | 28, 10, 8 | crab 2916 |
. . 3
class {𝑣 ∈ 𝒫
(Base‘𝑤) ∣ Fun
◡(𝑓 ∈ (Base‘(𝑣 mPoly (𝑤 ↾s 𝑘))) ↦ ((((𝑣 evalSub 𝑤)‘𝑘)‘𝑓)‘( I ↾ 𝑣)))} |
| 30 | 2, 3, 4, 8, 29 | cmpt2 6652 |
. 2
class (𝑤 ∈ V, 𝑘 ∈ 𝒫 (Base‘𝑤) ↦ {𝑣 ∈ 𝒫 (Base‘𝑤) ∣ Fun ◡(𝑓 ∈ (Base‘(𝑣 mPoly (𝑤 ↾s 𝑘))) ↦ ((((𝑣 evalSub 𝑤)‘𝑘)‘𝑓)‘( I ↾ 𝑣)))}) |
| 31 | 1, 30 | wceq 1483 |
1
wff AlgInd =
(𝑤 ∈ V, 𝑘 ∈ 𝒫
(Base‘𝑤) ↦
{𝑣 ∈ 𝒫
(Base‘𝑤) ∣ Fun
◡(𝑓 ∈ (Base‘(𝑣 mPoly (𝑤 ↾s 𝑘))) ↦ ((((𝑣 evalSub 𝑤)‘𝑘)‘𝑓)‘( I ↾ 𝑣)))}) |