Detailed syntax breakdown of Definition df-ana
| Step | Hyp | Ref
| Expression |
| 1 | | cana 24108 |
. 2
class
Ana |
| 2 | | vs |
. . 3
setvar 𝑠 |
| 3 | | cr 9935 |
. . . 4
class
ℝ |
| 4 | | cc 9934 |
. . . 4
class
ℂ |
| 5 | 3, 4 | cpr 4179 |
. . 3
class {ℝ,
ℂ} |
| 6 | | vx |
. . . . . . 7
setvar 𝑥 |
| 7 | 6 | cv 1482 |
. . . . . 6
class 𝑥 |
| 8 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
| 9 | 8 | cv 1482 |
. . . . . . . . 9
class 𝑓 |
| 10 | | cpnf 10071 |
. . . . . . . . . 10
class
+∞ |
| 11 | 2 | cv 1482 |
. . . . . . . . . . 11
class 𝑠 |
| 12 | | ctayl 24107 |
. . . . . . . . . . 11
class
Tayl |
| 13 | 11, 9, 12 | co 6650 |
. . . . . . . . . 10
class (𝑠 Tayl 𝑓) |
| 14 | 10, 7, 13 | co 6650 |
. . . . . . . . 9
class
(+∞(𝑠 Tayl
𝑓)𝑥) |
| 15 | 9, 14 | cin 3573 |
. . . . . . . 8
class (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)) |
| 16 | 15 | cdm 5114 |
. . . . . . 7
class dom
(𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)) |
| 17 | | ccnfld 19746 |
. . . . . . . . . 10
class
ℂfld |
| 18 | | ctopn 16082 |
. . . . . . . . . 10
class
TopOpen |
| 19 | 17, 18 | cfv 5888 |
. . . . . . . . 9
class
(TopOpen‘ℂfld) |
| 20 | | crest 16081 |
. . . . . . . . 9
class
↾t |
| 21 | 19, 11, 20 | co 6650 |
. . . . . . . 8
class
((TopOpen‘ℂfld) ↾t 𝑠) |
| 22 | | cnt 20821 |
. . . . . . . 8
class
int |
| 23 | 21, 22 | cfv 5888 |
. . . . . . 7
class
(int‘((TopOpen‘ℂfld) ↾t
𝑠)) |
| 24 | 16, 23 | cfv 5888 |
. . . . . 6
class
((int‘((TopOpen‘ℂfld) ↾t
𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥))) |
| 25 | 7, 24 | wcel 1990 |
. . . . 5
wff 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥))) |
| 26 | 9 | cdm 5114 |
. . . . 5
class dom 𝑓 |
| 27 | 25, 6, 26 | wral 2912 |
. . . 4
wff
∀𝑥 ∈ dom
𝑓 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥))) |
| 28 | | cpm 7858 |
. . . . 5
class
↑pm |
| 29 | 4, 11, 28 | co 6650 |
. . . 4
class (ℂ
↑pm 𝑠) |
| 30 | 27, 8, 29 | crab 2916 |
. . 3
class {𝑓 ∈ (ℂ
↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))} |
| 31 | 2, 5, 30 | cmpt 4729 |
. 2
class (𝑠 ∈ {ℝ, ℂ}
↦ {𝑓 ∈ (ℂ
↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))}) |
| 32 | 1, 31 | wceq 1483 |
1
wff Ana =
(𝑠 ∈ {ℝ,
ℂ} ↦ {𝑓 ∈
(ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))}) |