| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bj-diag | Structured version Visualization version GIF version | ||
| Description: Define the diagonal of the Cartesian square of a set. (Contributed by BJ, 22-Jun-2019.) |
| Ref | Expression |
|---|---|
| df-bj-diag | ⊢ Diag = (𝑥 ∈ V ↦ ( I ∩ (𝑥 × 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdiag2 33088 | . 2 class Diag | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cvv 3200 | . . 3 class V | |
| 4 | cid 5023 | . . . 4 class I | |
| 5 | 2 | cv 1482 | . . . . 5 class 𝑥 |
| 6 | 5, 5 | cxp 5112 | . . . 4 class (𝑥 × 𝑥) |
| 7 | 4, 6 | cin 3573 | . . 3 class ( I ∩ (𝑥 × 𝑥)) |
| 8 | 2, 3, 7 | cmpt 4729 | . 2 class (𝑥 ∈ V ↦ ( I ∩ (𝑥 × 𝑥))) |
| 9 | 1, 8 | wceq 1483 | 1 wff Diag = (𝑥 ∈ V ↦ ( I ∩ (𝑥 × 𝑥))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: bj-diagval 33090 |
| Copyright terms: Public domain | W3C validator |