Detailed syntax breakdown of Definition df-bj-oppc
| Step | Hyp | Ref
| Expression |
| 1 | | coppcc 33126 |
. 2
class
-ℂ̅ |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cccbar 33102 |
. . . 4
class
ℂ̅ |
| 4 | | ccchat 33119 |
. . . 4
class
ℂ̂ |
| 5 | 3, 4 | cun 3572 |
. . 3
class
(ℂ̅ ∪ ℂ̂) |
| 6 | 2 | cv 1482 |
. . . . 5
class 𝑥 |
| 7 | | cinfty 33117 |
. . . . 5
class
∞ |
| 8 | 6, 7 | wceq 1483 |
. . . 4
wff 𝑥 = ∞ |
| 9 | | cc 9934 |
. . . . . 6
class
ℂ |
| 10 | 6, 9 | wcel 1990 |
. . . . 5
wff 𝑥 ∈ ℂ |
| 11 | 6 | cneg 10267 |
. . . . 5
class -𝑥 |
| 12 | | cc0 9936 |
. . . . . . . 8
class
0 |
| 13 | | c1st 7166 |
. . . . . . . . 9
class
1st |
| 14 | 6, 13 | cfv 5888 |
. . . . . . . 8
class
(1st ‘𝑥) |
| 15 | | clt 10074 |
. . . . . . . 8
class
< |
| 16 | 12, 14, 15 | wbr 4653 |
. . . . . . 7
wff 0 <
(1st ‘𝑥) |
| 17 | | cpi 14797 |
. . . . . . . 8
class
π |
| 18 | | cmin 10266 |
. . . . . . . 8
class
− |
| 19 | 14, 17, 18 | co 6650 |
. . . . . . 7
class
((1st ‘𝑥) − π) |
| 20 | | caddc 9939 |
. . . . . . . 8
class
+ |
| 21 | 14, 17, 20 | co 6650 |
. . . . . . 7
class
((1st ‘𝑥) + π) |
| 22 | 16, 19, 21 | cif 4086 |
. . . . . 6
class if(0 <
(1st ‘𝑥),
((1st ‘𝑥)
− π), ((1st ‘𝑥) + π)) |
| 23 | | cinftyexpi 33093 |
. . . . . 6
class
inftyexpi |
| 24 | 22, 23 | cfv 5888 |
. . . . 5
class
(inftyexpi ‘if(0 < (1st ‘𝑥), ((1st ‘𝑥) − π), ((1st
‘𝑥) +
π))) |
| 25 | 10, 11, 24 | cif 4086 |
. . . 4
class if(𝑥 ∈ ℂ, -𝑥, (inftyexpi ‘if(0 <
(1st ‘𝑥),
((1st ‘𝑥)
− π), ((1st ‘𝑥) + π)))) |
| 26 | 8, 7, 25 | cif 4086 |
. . 3
class if(𝑥 = ∞, ∞, if(𝑥 ∈ ℂ, -𝑥, (inftyexpi ‘if(0 <
(1st ‘𝑥),
((1st ‘𝑥)
− π), ((1st ‘𝑥) + π))))) |
| 27 | 2, 5, 26 | cmpt 4729 |
. 2
class (𝑥 ∈ (ℂ̅ ∪
ℂ̂) ↦ if(𝑥 = ∞, ∞, if(𝑥 ∈ ℂ, -𝑥, (inftyexpi ‘if(0 < (1st
‘𝑥), ((1st
‘𝑥) − π),
((1st ‘𝑥)
+ π)))))) |
| 28 | 1, 27 | wceq 1483 |
1
wff
-ℂ̅ = (𝑥 ∈ (ℂ̅ ∪ ℂ̂)
↦ if(𝑥 = ∞,
∞, if(𝑥 ∈
ℂ, -𝑥, (inftyexpi
‘if(0 < (1st ‘𝑥), ((1st ‘𝑥) − π), ((1st
‘𝑥) +
π)))))) |