Detailed syntax breakdown of Definition df-bj-prcpal
| Step | Hyp | Ref
| Expression |
| 1 | | cprcpal 33128 |
. 2
class
prcpal |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cr 9935 |
. . 3
class
ℝ |
| 4 | 2 | cv 1482 |
. . . . 5
class 𝑥 |
| 5 | | c2 11070 |
. . . . . 6
class
2 |
| 6 | | cpi 14797 |
. . . . . 6
class
π |
| 7 | | cmul 9941 |
. . . . . 6
class
· |
| 8 | 5, 6, 7 | co 6650 |
. . . . 5
class (2
· π) |
| 9 | | cmo 12668 |
. . . . 5
class
mod |
| 10 | 4, 8, 9 | co 6650 |
. . . 4
class (𝑥 mod (2 ·
π)) |
| 11 | | cle 10075 |
. . . . . 6
class
≤ |
| 12 | 10, 6, 11 | wbr 4653 |
. . . . 5
wff (𝑥 mod (2 · π)) ≤
π |
| 13 | | cc0 9936 |
. . . . 5
class
0 |
| 14 | 12, 13, 8 | cif 4086 |
. . . 4
class if((𝑥 mod (2 · π)) ≤
π, 0, (2 · π)) |
| 15 | | cmin 10266 |
. . . 4
class
− |
| 16 | 10, 14, 15 | co 6650 |
. . 3
class ((𝑥 mod (2 · π)) −
if((𝑥 mod (2 ·
π)) ≤ π, 0, (2 · π))) |
| 17 | 2, 3, 16 | cmpt 4729 |
. 2
class (𝑥 ∈ ℝ ↦ ((𝑥 mod (2 · π)) −
if((𝑥 mod (2 ·
π)) ≤ π, 0, (2 · π)))) |
| 18 | 1, 17 | wceq 1483 |
1
wff prcpal =
(𝑥 ∈ ℝ ↦
((𝑥 mod (2 · π))
− if((𝑥 mod (2
· π)) ≤ π, 0, (2 · π)))) |