| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-clwwlksn | Structured version Visualization version GIF version | ||
| Description: Define the set of all closed walks (in an undirected graph) of a fixed length n as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks 26667. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.) |
| Ref | Expression |
|---|---|
| df-clwwlksn | ⊢ ClWWalksN = (𝑛 ∈ ℕ, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (#‘𝑤) = 𝑛}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cclwwlksn 26876 | . 2 class ClWWalksN | |
| 2 | vn | . . 3 setvar 𝑛 | |
| 3 | vg | . . 3 setvar 𝑔 | |
| 4 | cn 11020 | . . 3 class ℕ | |
| 5 | cvv 3200 | . . 3 class V | |
| 6 | vw | . . . . . . 7 setvar 𝑤 | |
| 7 | 6 | cv 1482 | . . . . . 6 class 𝑤 |
| 8 | chash 13117 | . . . . . 6 class # | |
| 9 | 7, 8 | cfv 5888 | . . . . 5 class (#‘𝑤) |
| 10 | 2 | cv 1482 | . . . . 5 class 𝑛 |
| 11 | 9, 10 | wceq 1483 | . . . 4 wff (#‘𝑤) = 𝑛 |
| 12 | 3 | cv 1482 | . . . . 5 class 𝑔 |
| 13 | cclwwlks 26875 | . . . . 5 class ClWWalks | |
| 14 | 12, 13 | cfv 5888 | . . . 4 class (ClWWalks‘𝑔) |
| 15 | 11, 6, 14 | crab 2916 | . . 3 class {𝑤 ∈ (ClWWalks‘𝑔) ∣ (#‘𝑤) = 𝑛} |
| 16 | 2, 3, 4, 5, 15 | cmpt2 6652 | . 2 class (𝑛 ∈ ℕ, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (#‘𝑤) = 𝑛}) |
| 17 | 1, 16 | wceq 1483 | 1 wff ClWWalksN = (𝑛 ∈ ℕ, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (#‘𝑤) = 𝑛}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: clwwlksn 26881 clwwlknbp0 26884 |
| Copyright terms: Public domain | W3C validator |