Detailed syntax breakdown of Definition df-cm
| Step | Hyp | Ref
| Expression |
| 1 | | ccm 27793 |
. 2
class
𝐶ℋ |
| 2 | | vx |
. . . . . . 7
setvar 𝑥 |
| 3 | 2 | cv 1482 |
. . . . . 6
class 𝑥 |
| 4 | | cch 27786 |
. . . . . 6
class
Cℋ |
| 5 | 3, 4 | wcel 1990 |
. . . . 5
wff 𝑥 ∈
Cℋ |
| 6 | | vy |
. . . . . . 7
setvar 𝑦 |
| 7 | 6 | cv 1482 |
. . . . . 6
class 𝑦 |
| 8 | 7, 4 | wcel 1990 |
. . . . 5
wff 𝑦 ∈
Cℋ |
| 9 | 5, 8 | wa 384 |
. . . 4
wff (𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ
) |
| 10 | 3, 7 | cin 3573 |
. . . . . 6
class (𝑥 ∩ 𝑦) |
| 11 | | cort 27787 |
. . . . . . . 8
class
⊥ |
| 12 | 7, 11 | cfv 5888 |
. . . . . . 7
class
(⊥‘𝑦) |
| 13 | 3, 12 | cin 3573 |
. . . . . 6
class (𝑥 ∩ (⊥‘𝑦)) |
| 14 | | chj 27790 |
. . . . . 6
class
∨ℋ |
| 15 | 10, 13, 14 | co 6650 |
. . . . 5
class ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦))) |
| 16 | 3, 15 | wceq 1483 |
. . . 4
wff 𝑥 = ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦))) |
| 17 | 9, 16 | wa 384 |
. . 3
wff ((𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ 𝑥 = ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦)))) |
| 18 | 17, 2, 6 | copab 4712 |
. 2
class
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ 𝑥 = ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦))))} |
| 19 | 1, 18 | wceq 1483 |
1
wff
𝐶ℋ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ Cℋ
∧ 𝑦 ∈
Cℋ ) ∧ 𝑥 = ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦))))} |