MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cpmat2mat Structured version   Visualization version   GIF version

Definition df-cpmat2mat 20513
Description: Transformation of a constant polynomial matrix (over a ring) into a matrix over the corresponding ring. Since this function is the inverse function of matToPolyMat, see m2cpminv 20565, it is also called "inverse matrix transformation" in the following. (Contributed by AV, 14-Dec-2019.)
Assertion
Ref Expression
df-cpmat2mat cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
Distinct variable group:   𝑚,𝑛,𝑟,𝑥,𝑦

Detailed syntax breakdown of Definition df-cpmat2mat
StepHypRef Expression
1 ccpmat2mat 20510 . 2 class cPolyMatToMat
2 vn . . 3 setvar 𝑛
3 vr . . 3 setvar 𝑟
4 cfn 7955 . . 3 class Fin
5 cvv 3200 . . 3 class V
6 vm . . . 4 setvar 𝑚
72cv 1482 . . . . 5 class 𝑛
83cv 1482 . . . . 5 class 𝑟
9 ccpmat 20508 . . . . 5 class ConstPolyMat
107, 8, 9co 6650 . . . 4 class (𝑛 ConstPolyMat 𝑟)
11 vx . . . . 5 setvar 𝑥
12 vy . . . . 5 setvar 𝑦
13 cc0 9936 . . . . . 6 class 0
1411cv 1482 . . . . . . . 8 class 𝑥
1512cv 1482 . . . . . . . 8 class 𝑦
166cv 1482 . . . . . . . 8 class 𝑚
1714, 15, 16co 6650 . . . . . . 7 class (𝑥𝑚𝑦)
18 cco1 19548 . . . . . . 7 class coe1
1917, 18cfv 5888 . . . . . 6 class (coe1‘(𝑥𝑚𝑦))
2013, 19cfv 5888 . . . . 5 class ((coe1‘(𝑥𝑚𝑦))‘0)
2111, 12, 7, 7, 20cmpt2 6652 . . . 4 class (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))
226, 10, 21cmpt 4729 . . 3 class (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))
232, 3, 4, 5, 22cmpt2 6652 . 2 class (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
241, 23wceq 1483 1 wff cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
Colors of variables: wff setvar class
This definition is referenced by:  cpm2mfval  20554
  Copyright terms: Public domain W3C validator