Detailed syntax breakdown of Definition df-csh
| Step | Hyp | Ref
| Expression |
| 1 | | ccsh 13534 |
. 2
class
cyclShift |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | vn |
. . 3
setvar 𝑛 |
| 4 | | vf |
. . . . . . 7
setvar 𝑓 |
| 5 | 4 | cv 1482 |
. . . . . 6
class 𝑓 |
| 6 | | cc0 9936 |
. . . . . . 7
class
0 |
| 7 | | vl |
. . . . . . . 8
setvar 𝑙 |
| 8 | 7 | cv 1482 |
. . . . . . 7
class 𝑙 |
| 9 | | cfzo 12465 |
. . . . . . 7
class
..^ |
| 10 | 6, 8, 9 | co 6650 |
. . . . . 6
class
(0..^𝑙) |
| 11 | 5, 10 | wfn 5883 |
. . . . 5
wff 𝑓 Fn (0..^𝑙) |
| 12 | | cn0 11292 |
. . . . 5
class
ℕ0 |
| 13 | 11, 7, 12 | wrex 2913 |
. . . 4
wff
∃𝑙 ∈
ℕ0 𝑓 Fn
(0..^𝑙) |
| 14 | 13, 4 | cab 2608 |
. . 3
class {𝑓 ∣ ∃𝑙 ∈ ℕ0
𝑓 Fn (0..^𝑙)} |
| 15 | | cz 11377 |
. . 3
class
ℤ |
| 16 | 2 | cv 1482 |
. . . . 5
class 𝑤 |
| 17 | | c0 3915 |
. . . . 5
class
∅ |
| 18 | 16, 17 | wceq 1483 |
. . . 4
wff 𝑤 = ∅ |
| 19 | 3 | cv 1482 |
. . . . . . . 8
class 𝑛 |
| 20 | | chash 13117 |
. . . . . . . . 9
class
# |
| 21 | 16, 20 | cfv 5888 |
. . . . . . . 8
class
(#‘𝑤) |
| 22 | | cmo 12668 |
. . . . . . . 8
class
mod |
| 23 | 19, 21, 22 | co 6650 |
. . . . . . 7
class (𝑛 mod (#‘𝑤)) |
| 24 | 23, 21 | cop 4183 |
. . . . . 6
class
〈(𝑛 mod
(#‘𝑤)),
(#‘𝑤)〉 |
| 25 | | csubstr 13295 |
. . . . . 6
class
substr |
| 26 | 16, 24, 25 | co 6650 |
. . . . 5
class (𝑤 substr 〈(𝑛 mod (#‘𝑤)), (#‘𝑤)〉) |
| 27 | 6, 23 | cop 4183 |
. . . . . 6
class 〈0,
(𝑛 mod (#‘𝑤))〉 |
| 28 | 16, 27, 25 | co 6650 |
. . . . 5
class (𝑤 substr 〈0, (𝑛 mod (#‘𝑤))〉) |
| 29 | | cconcat 13293 |
. . . . 5
class
++ |
| 30 | 26, 28, 29 | co 6650 |
. . . 4
class ((𝑤 substr 〈(𝑛 mod (#‘𝑤)), (#‘𝑤)〉) ++ (𝑤 substr 〈0, (𝑛 mod (#‘𝑤))〉)) |
| 31 | 18, 17, 30 | cif 4086 |
. . 3
class if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (#‘𝑤)), (#‘𝑤)〉) ++ (𝑤 substr 〈0, (𝑛 mod (#‘𝑤))〉))) |
| 32 | 2, 3, 14, 15, 31 | cmpt2 6652 |
. 2
class (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (#‘𝑤)), (#‘𝑤)〉) ++ (𝑤 substr 〈0, (𝑛 mod (#‘𝑤))〉)))) |
| 33 | 1, 32 | wceq 1483 |
1
wff cyclShift
= (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0
𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (#‘𝑤)), (#‘𝑤)〉) ++ (𝑤 substr 〈0, (𝑛 mod (#‘𝑤))〉)))) |