Detailed syntax breakdown of Definition df-cup
| Step | Hyp | Ref
| Expression |
| 1 | | ccup 31953 |
. 2
class
Cup |
| 2 | | cvv 3200 |
. . . . 5
class
V |
| 3 | 2, 2 | cxp 5112 |
. . . 4
class (V
× V) |
| 4 | 3, 2 | cxp 5112 |
. . 3
class ((V
× V) × V) |
| 5 | | cep 5028 |
. . . . . 6
class
E |
| 6 | 2, 5 | ctxp 31937 |
. . . . 5
class (V
⊗ E ) |
| 7 | | c1st 7166 |
. . . . . . . . 9
class
1st |
| 8 | 7 | ccnv 5113 |
. . . . . . . 8
class ◡1st |
| 9 | 8, 5 | ccom 5118 |
. . . . . . 7
class (◡1st ∘ E ) |
| 10 | | c2nd 7167 |
. . . . . . . . 9
class
2nd |
| 11 | 10 | ccnv 5113 |
. . . . . . . 8
class ◡2nd |
| 12 | 11, 5 | ccom 5118 |
. . . . . . 7
class (◡2nd ∘ E ) |
| 13 | 9, 12 | cun 3572 |
. . . . . 6
class ((◡1st ∘ E ) ∪ (◡2nd ∘ E )) |
| 14 | 13, 2 | ctxp 31937 |
. . . . 5
class (((◡1st ∘ E ) ∪ (◡2nd ∘ E )) ⊗
V) |
| 15 | 6, 14 | csymdif 3843 |
. . . 4
class ((V
⊗ E ) △ (((◡1st ∘ E ) ∪ (◡2nd ∘ E )) ⊗
V)) |
| 16 | 15 | crn 5115 |
. . 3
class ran ((V
⊗ E ) △ (((◡1st ∘ E ) ∪ (◡2nd ∘ E )) ⊗
V)) |
| 17 | 4, 16 | cdif 3571 |
. 2
class (((V
× V) × V) ∖ ran ((V ⊗ E ) △ (((◡1st ∘ E ) ∪ (◡2nd ∘ E )) ⊗
V))) |
| 18 | 1, 17 | wceq 1483 |
1
wff Cup = (((V
× V) × V) ∖ ran ((V ⊗ E ) △ (((◡1st ∘ E ) ∪ (◡2nd ∘ E )) ⊗
V))) |