| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ds | Structured version Visualization version GIF version | ||
| Description: Define the distance function component of a metric space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| df-ds | ⊢ dist = Slot ;12 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cds 15950 | . 2 class dist | |
| 2 | c1 9937 | . . . 4 class 1 | |
| 3 | c2 11070 | . . . 4 class 2 | |
| 4 | 2, 3 | cdc 11493 | . . 3 class ;12 |
| 5 | 4 | cslot 15856 | . 2 class Slot ;12 |
| 6 | 1, 5 | wceq 1483 | 1 wff dist = Slot ;12 |
| Colors of variables: wff setvar class |
| This definition is referenced by: dsndx 16062 dsid 16063 ressds 16073 mgpds 18499 srads 19186 tmslem 22287 tngds 22452 ttgds 25761 |
| Copyright terms: Public domain | W3C validator |