Detailed syntax breakdown of Definition df-dv
| Step | Hyp | Ref
| Expression |
| 1 | | cdv 23627 |
. 2
class
D |
| 2 | | vs |
. . 3
setvar 𝑠 |
| 3 | | vf |
. . 3
setvar 𝑓 |
| 4 | | cc 9934 |
. . . 4
class
ℂ |
| 5 | 4 | cpw 4158 |
. . 3
class 𝒫
ℂ |
| 6 | 2 | cv 1482 |
. . . 4
class 𝑠 |
| 7 | | cpm 7858 |
. . . 4
class
↑pm |
| 8 | 4, 6, 7 | co 6650 |
. . 3
class (ℂ
↑pm 𝑠) |
| 9 | | vx |
. . . 4
setvar 𝑥 |
| 10 | 3 | cv 1482 |
. . . . . 6
class 𝑓 |
| 11 | 10 | cdm 5114 |
. . . . 5
class dom 𝑓 |
| 12 | | ccnfld 19746 |
. . . . . . . 8
class
ℂfld |
| 13 | | ctopn 16082 |
. . . . . . . 8
class
TopOpen |
| 14 | 12, 13 | cfv 5888 |
. . . . . . 7
class
(TopOpen‘ℂfld) |
| 15 | | crest 16081 |
. . . . . . 7
class
↾t |
| 16 | 14, 6, 15 | co 6650 |
. . . . . 6
class
((TopOpen‘ℂfld) ↾t 𝑠) |
| 17 | | cnt 20821 |
. . . . . 6
class
int |
| 18 | 16, 17 | cfv 5888 |
. . . . 5
class
(int‘((TopOpen‘ℂfld) ↾t
𝑠)) |
| 19 | 11, 18 | cfv 5888 |
. . . 4
class
((int‘((TopOpen‘ℂfld) ↾t
𝑠))‘dom 𝑓) |
| 20 | 9 | cv 1482 |
. . . . . 6
class 𝑥 |
| 21 | 20 | csn 4177 |
. . . . 5
class {𝑥} |
| 22 | | vz |
. . . . . . 7
setvar 𝑧 |
| 23 | 11, 21 | cdif 3571 |
. . . . . . 7
class (dom
𝑓 ∖ {𝑥}) |
| 24 | 22 | cv 1482 |
. . . . . . . . . 10
class 𝑧 |
| 25 | 24, 10 | cfv 5888 |
. . . . . . . . 9
class (𝑓‘𝑧) |
| 26 | 20, 10 | cfv 5888 |
. . . . . . . . 9
class (𝑓‘𝑥) |
| 27 | | cmin 10266 |
. . . . . . . . 9
class
− |
| 28 | 25, 26, 27 | co 6650 |
. . . . . . . 8
class ((𝑓‘𝑧) − (𝑓‘𝑥)) |
| 29 | 24, 20, 27 | co 6650 |
. . . . . . . 8
class (𝑧 − 𝑥) |
| 30 | | cdiv 10684 |
. . . . . . . 8
class
/ |
| 31 | 28, 29, 30 | co 6650 |
. . . . . . 7
class (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥)) |
| 32 | 22, 23, 31 | cmpt 4729 |
. . . . . 6
class (𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) |
| 33 | | climc 23626 |
. . . . . 6
class
limℂ |
| 34 | 32, 20, 33 | co 6650 |
. . . . 5
class ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) |
| 35 | 21, 34 | cxp 5112 |
. . . 4
class ({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
| 36 | 9, 19, 35 | ciun 4520 |
. . 3
class ∪ 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
| 37 | 2, 3, 5, 8, 36 | cmpt2 6652 |
. 2
class (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ
↑pm 𝑠) ↦ ∪
𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
| 38 | 1, 37 | wceq 1483 |
1
wff D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ
↑pm 𝑠) ↦ ∪
𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |