Detailed syntax breakdown of Definition df-eqp
| Step | Hyp | Ref
| Expression |
| 1 | | ceqp 31541 |
. 2
class
~Qp |
| 2 | | vp |
. . 3
setvar 𝑝 |
| 3 | | cprime 15385 |
. . 3
class
ℙ |
| 4 | | vf |
. . . . . . . 8
setvar 𝑓 |
| 5 | 4 | cv 1482 |
. . . . . . 7
class 𝑓 |
| 6 | | vg |
. . . . . . . 8
setvar 𝑔 |
| 7 | 6 | cv 1482 |
. . . . . . 7
class 𝑔 |
| 8 | 5, 7 | cpr 4179 |
. . . . . 6
class {𝑓, 𝑔} |
| 9 | | cz 11377 |
. . . . . . 7
class
ℤ |
| 10 | | cmap 7857 |
. . . . . . 7
class
↑𝑚 |
| 11 | 9, 9, 10 | co 6650 |
. . . . . 6
class (ℤ
↑𝑚 ℤ) |
| 12 | 8, 11 | wss 3574 |
. . . . 5
wff {𝑓, 𝑔} ⊆ (ℤ ↑𝑚
ℤ) |
| 13 | | vn |
. . . . . . . . . . 11
setvar 𝑛 |
| 14 | 13 | cv 1482 |
. . . . . . . . . 10
class 𝑛 |
| 15 | 14 | cneg 10267 |
. . . . . . . . 9
class -𝑛 |
| 16 | | cuz 11687 |
. . . . . . . . 9
class
ℤ≥ |
| 17 | 15, 16 | cfv 5888 |
. . . . . . . 8
class
(ℤ≥‘-𝑛) |
| 18 | | vk |
. . . . . . . . . . . . 13
setvar 𝑘 |
| 19 | 18 | cv 1482 |
. . . . . . . . . . . 12
class 𝑘 |
| 20 | 19 | cneg 10267 |
. . . . . . . . . . 11
class -𝑘 |
| 21 | 20, 5 | cfv 5888 |
. . . . . . . . . 10
class (𝑓‘-𝑘) |
| 22 | 20, 7 | cfv 5888 |
. . . . . . . . . 10
class (𝑔‘-𝑘) |
| 23 | | cmin 10266 |
. . . . . . . . . 10
class
− |
| 24 | 21, 22, 23 | co 6650 |
. . . . . . . . 9
class ((𝑓‘-𝑘) − (𝑔‘-𝑘)) |
| 25 | 2 | cv 1482 |
. . . . . . . . . 10
class 𝑝 |
| 26 | | c1 9937 |
. . . . . . . . . . . 12
class
1 |
| 27 | | caddc 9939 |
. . . . . . . . . . . 12
class
+ |
| 28 | 14, 26, 27 | co 6650 |
. . . . . . . . . . 11
class (𝑛 + 1) |
| 29 | 19, 28, 27 | co 6650 |
. . . . . . . . . 10
class (𝑘 + (𝑛 + 1)) |
| 30 | | cexp 12860 |
. . . . . . . . . 10
class
↑ |
| 31 | 25, 29, 30 | co 6650 |
. . . . . . . . 9
class (𝑝↑(𝑘 + (𝑛 + 1))) |
| 32 | | cdiv 10684 |
. . . . . . . . 9
class
/ |
| 33 | 24, 31, 32 | co 6650 |
. . . . . . . 8
class (((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) |
| 34 | 17, 33, 18 | csu 14416 |
. . . . . . 7
class
Σ𝑘 ∈
(ℤ≥‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) |
| 35 | 34, 9 | wcel 1990 |
. . . . . 6
wff
Σ𝑘 ∈
(ℤ≥‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ |
| 36 | 35, 13, 9 | wral 2912 |
. . . . 5
wff
∀𝑛 ∈
ℤ Σ𝑘 ∈
(ℤ≥‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ |
| 37 | 12, 36 | wa 384 |
. . . 4
wff ({𝑓, 𝑔} ⊆ (ℤ ↑𝑚
ℤ) ∧ ∀𝑛
∈ ℤ Σ𝑘
∈ (ℤ≥‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ) |
| 38 | 37, 4, 6 | copab 4712 |
. . 3
class
{〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (ℤ ↑𝑚
ℤ) ∧ ∀𝑛
∈ ℤ Σ𝑘
∈ (ℤ≥‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ)} |
| 39 | 2, 3, 38 | cmpt 4729 |
. 2
class (𝑝 ∈ ℙ ↦
{〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (ℤ ↑𝑚
ℤ) ∧ ∀𝑛
∈ ℤ Σ𝑘
∈ (ℤ≥‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ)}) |
| 40 | 1, 39 | wceq 1483 |
1
wff ~Qp =
(𝑝 ∈ ℙ ↦
{〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (ℤ ↑𝑚
ℤ) ∧ ∀𝑛
∈ ℤ Σ𝑘
∈ (ℤ≥‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ)}) |