Detailed syntax breakdown of Definition df-flf
| Step | Hyp | Ref
| Expression |
| 1 | | cflf 21739 |
. 2
class
fLimf |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | vy |
. . 3
setvar 𝑦 |
| 4 | | ctop 20698 |
. . 3
class
Top |
| 5 | | cfil 21649 |
. . . . 5
class
Fil |
| 6 | 5 | crn 5115 |
. . . 4
class ran
Fil |
| 7 | 6 | cuni 4436 |
. . 3
class ∪ ran Fil |
| 8 | | vf |
. . . 4
setvar 𝑓 |
| 9 | 2 | cv 1482 |
. . . . . 6
class 𝑥 |
| 10 | 9 | cuni 4436 |
. . . . 5
class ∪ 𝑥 |
| 11 | 3 | cv 1482 |
. . . . . 6
class 𝑦 |
| 12 | 11 | cuni 4436 |
. . . . 5
class ∪ 𝑦 |
| 13 | | cmap 7857 |
. . . . 5
class
↑𝑚 |
| 14 | 10, 12, 13 | co 6650 |
. . . 4
class (∪ 𝑥
↑𝑚 ∪ 𝑦) |
| 15 | 8 | cv 1482 |
. . . . . . 7
class 𝑓 |
| 16 | | cfm 21737 |
. . . . . . 7
class
FilMap |
| 17 | 10, 15, 16 | co 6650 |
. . . . . 6
class (∪ 𝑥
FilMap 𝑓) |
| 18 | 11, 17 | cfv 5888 |
. . . . 5
class ((∪ 𝑥
FilMap 𝑓)‘𝑦) |
| 19 | | cflim 21738 |
. . . . 5
class
fLim |
| 20 | 9, 18, 19 | co 6650 |
. . . 4
class (𝑥 fLim ((∪ 𝑥
FilMap 𝑓)‘𝑦)) |
| 21 | 8, 14, 20 | cmpt 4729 |
. . 3
class (𝑓 ∈ (∪ 𝑥
↑𝑚 ∪ 𝑦) ↦ (𝑥 fLim ((∪ 𝑥 FilMap 𝑓)‘𝑦))) |
| 22 | 2, 3, 4, 7, 21 | cmpt2 6652 |
. 2
class (𝑥 ∈ Top, 𝑦 ∈ ∪ ran Fil
↦ (𝑓 ∈ (∪ 𝑥
↑𝑚 ∪ 𝑦) ↦ (𝑥 fLim ((∪ 𝑥 FilMap 𝑓)‘𝑦)))) |
| 23 | 1, 22 | wceq 1483 |
1
wff fLimf =
(𝑥 ∈ Top, 𝑦 ∈ ∪ ran Fil ↦ (𝑓 ∈ (∪ 𝑥 ↑𝑚
∪ 𝑦) ↦ (𝑥 fLim ((∪ 𝑥 FilMap 𝑓)‘𝑦)))) |