| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-fullfun | Structured version Visualization version GIF version | ||
| Description: Define the full function over 𝐹. This is a function with domain V that always agrees with 𝐹 for its value. (Contributed by Scott Fenton, 17-Apr-2014.) |
| Ref | Expression |
|---|---|
| df-fullfun | ⊢ FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cF | . . 3 class 𝐹 | |
| 2 | 1 | cfullfn 31957 | . 2 class FullFun𝐹 |
| 3 | 1 | cfunpart 31956 | . . 3 class Funpart𝐹 |
| 4 | cvv 3200 | . . . . 5 class V | |
| 5 | 3 | cdm 5114 | . . . . 5 class dom Funpart𝐹 |
| 6 | 4, 5 | cdif 3571 | . . . 4 class (V ∖ dom Funpart𝐹) |
| 7 | c0 3915 | . . . . 5 class ∅ | |
| 8 | 7 | csn 4177 | . . . 4 class {∅} |
| 9 | 6, 8 | cxp 5112 | . . 3 class ((V ∖ dom Funpart𝐹) × {∅}) |
| 10 | 3, 9 | cun 3572 | . 2 class (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) |
| 11 | 2, 10 | wceq 1483 | 1 wff FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) |
| Colors of variables: wff setvar class |
| This definition is referenced by: fullfunfnv 32053 fullfunfv 32054 |
| Copyright terms: Public domain | W3C validator |