Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-gcdOLD Structured version   Visualization version   GIF version

Definition df-gcdOLD 32459
Description: gcdOLD (𝐴, 𝐵) is the largest positive integer that evenly divides both 𝐴 and 𝐵. (Contributed by Jeff Hoffman, 17-Jun-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-gcdOLD gcdOLD (𝐴, 𝐵) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, < )
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-gcdOLD
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cgcdOLD 32458 . 2 class gcdOLD (𝐴, 𝐵)
4 vx . . . . . . . 8 setvar 𝑥
54cv 1482 . . . . . . 7 class 𝑥
6 cdiv 10684 . . . . . . 7 class /
71, 5, 6co 6650 . . . . . 6 class (𝐴 / 𝑥)
8 cn 11020 . . . . . 6 class
97, 8wcel 1990 . . . . 5 wff (𝐴 / 𝑥) ∈ ℕ
102, 5, 6co 6650 . . . . . 6 class (𝐵 / 𝑥)
1110, 8wcel 1990 . . . . 5 wff (𝐵 / 𝑥) ∈ ℕ
129, 11wa 384 . . . 4 wff ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)
1312, 4, 8crab 2916 . . 3 class {𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}
14 clt 10074 . . 3 class <
1513, 8, 14csup 8346 . 2 class sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, < )
163, 15wceq 1483 1 wff gcdOLD (𝐴, 𝐵) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, < )
Colors of variables: wff setvar class
This definition is referenced by:  ee7.2aOLD  32460
  Copyright terms: Public domain W3C validator