Detailed syntax breakdown of Definition df-gcdOLD
| Step | Hyp | Ref
| Expression |
| 1 | | cA |
. . 3
class 𝐴 |
| 2 | | cB |
. . 3
class 𝐵 |
| 3 | 1, 2 | cgcdOLD 32458 |
. 2
class
gcdOLD (𝐴, 𝐵) |
| 4 | | vx |
. . . . . . . 8
setvar 𝑥 |
| 5 | 4 | cv 1482 |
. . . . . . 7
class 𝑥 |
| 6 | | cdiv 10684 |
. . . . . . 7
class
/ |
| 7 | 1, 5, 6 | co 6650 |
. . . . . 6
class (𝐴 / 𝑥) |
| 8 | | cn 11020 |
. . . . . 6
class
ℕ |
| 9 | 7, 8 | wcel 1990 |
. . . . 5
wff (𝐴 / 𝑥) ∈ ℕ |
| 10 | 2, 5, 6 | co 6650 |
. . . . . 6
class (𝐵 / 𝑥) |
| 11 | 10, 8 | wcel 1990 |
. . . . 5
wff (𝐵 / 𝑥) ∈ ℕ |
| 12 | 9, 11 | wa 384 |
. . . 4
wff ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ) |
| 13 | 12, 4, 8 | crab 2916 |
. . 3
class {𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)} |
| 14 | | clt 10074 |
. . 3
class
< |
| 15 | 13, 8, 14 | csup 8346 |
. 2
class
sup({𝑥 ∈
ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, <
) |
| 16 | 3, 15 | wceq 1483 |
1
wff
gcdOLD (𝐴, 𝐵) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, <
) |