Detailed syntax breakdown of Definition df-gf
| Step | Hyp | Ref
| Expression |
| 1 | | cgf 31539 |
. 2
class
GF |
| 2 | | vp |
. . 3
setvar 𝑝 |
| 3 | | vn |
. . 3
setvar 𝑛 |
| 4 | | cprime 15385 |
. . 3
class
ℙ |
| 5 | | cn 11020 |
. . 3
class
ℕ |
| 6 | | vr |
. . . 4
setvar 𝑟 |
| 7 | 2 | cv 1482 |
. . . . 5
class 𝑝 |
| 8 | | czn 19851 |
. . . . 5
class
ℤ/nℤ |
| 9 | 7, 8 | cfv 5888 |
. . . 4
class
(ℤ/nℤ‘𝑝) |
| 10 | 6 | cv 1482 |
. . . . . 6
class 𝑟 |
| 11 | | vs |
. . . . . . . 8
setvar 𝑠 |
| 12 | | cpl1 19547 |
. . . . . . . . 9
class
Poly1 |
| 13 | 10, 12 | cfv 5888 |
. . . . . . . 8
class
(Poly1‘𝑟) |
| 14 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 15 | | cv1 19546 |
. . . . . . . . . 10
class
var1 |
| 16 | 10, 15 | cfv 5888 |
. . . . . . . . 9
class
(var1‘𝑟) |
| 17 | 3 | cv 1482 |
. . . . . . . . . . . 12
class 𝑛 |
| 18 | | cexp 12860 |
. . . . . . . . . . . 12
class
↑ |
| 19 | 7, 17, 18 | co 6650 |
. . . . . . . . . . 11
class (𝑝↑𝑛) |
| 20 | 14 | cv 1482 |
. . . . . . . . . . 11
class 𝑥 |
| 21 | 11 | cv 1482 |
. . . . . . . . . . . . 13
class 𝑠 |
| 22 | | cmgp 18489 |
. . . . . . . . . . . . 13
class
mulGrp |
| 23 | 21, 22 | cfv 5888 |
. . . . . . . . . . . 12
class
(mulGrp‘𝑠) |
| 24 | | cmg 17540 |
. . . . . . . . . . . 12
class
.g |
| 25 | 23, 24 | cfv 5888 |
. . . . . . . . . . 11
class
(.g‘(mulGrp‘𝑠)) |
| 26 | 19, 20, 25 | co 6650 |
. . . . . . . . . 10
class ((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥) |
| 27 | | csg 17424 |
. . . . . . . . . . 11
class
-g |
| 28 | 21, 27 | cfv 5888 |
. . . . . . . . . 10
class
(-g‘𝑠) |
| 29 | 26, 20, 28 | co 6650 |
. . . . . . . . 9
class (((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥) |
| 30 | 14, 16, 29 | csb 3533 |
. . . . . . . 8
class
⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥) |
| 31 | 11, 13, 30 | csb 3533 |
. . . . . . 7
class
⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥) |
| 32 | 31 | csn 4177 |
. . . . . 6
class
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)} |
| 33 | | csf 31528 |
. . . . . 6
class
splitFld |
| 34 | 10, 32, 33 | co 6650 |
. . . . 5
class (𝑟 splitFld
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}) |
| 35 | | c1st 7166 |
. . . . 5
class
1st |
| 36 | 34, 35 | cfv 5888 |
. . . 4
class
(1st ‘(𝑟 splitFld
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)})) |
| 37 | 6, 9, 36 | csb 3533 |
. . 3
class
⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(1st ‘(𝑟 splitFld
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)})) |
| 38 | 2, 3, 4, 5, 37 | cmpt2 6652 |
. 2
class (𝑝 ∈ ℙ, 𝑛 ∈ ℕ ↦
⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(1st ‘(𝑟 splitFld
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}))) |
| 39 | 1, 38 | wceq 1483 |
1
wff GF =
(𝑝 ∈ ℙ, 𝑛 ∈ ℕ ↦
⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(1st ‘(𝑟 splitFld
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}))) |