Detailed syntax breakdown of Definition df-gru
| Step | Hyp | Ref
| Expression |
| 1 | | cgru 9612 |
. 2
class
Univ |
| 2 | | vu |
. . . . . 6
setvar 𝑢 |
| 3 | 2 | cv 1482 |
. . . . 5
class 𝑢 |
| 4 | 3 | wtr 4752 |
. . . 4
wff Tr 𝑢 |
| 5 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 6 | 5 | cv 1482 |
. . . . . . . 8
class 𝑥 |
| 7 | 6 | cpw 4158 |
. . . . . . 7
class 𝒫
𝑥 |
| 8 | 7, 3 | wcel 1990 |
. . . . . 6
wff 𝒫
𝑥 ∈ 𝑢 |
| 9 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
| 10 | 9 | cv 1482 |
. . . . . . . . 9
class 𝑦 |
| 11 | 6, 10 | cpr 4179 |
. . . . . . . 8
class {𝑥, 𝑦} |
| 12 | 11, 3 | wcel 1990 |
. . . . . . 7
wff {𝑥, 𝑦} ∈ 𝑢 |
| 13 | 12, 9, 3 | wral 2912 |
. . . . . 6
wff
∀𝑦 ∈
𝑢 {𝑥, 𝑦} ∈ 𝑢 |
| 14 | 10 | crn 5115 |
. . . . . . . . 9
class ran 𝑦 |
| 15 | 14 | cuni 4436 |
. . . . . . . 8
class ∪ ran 𝑦 |
| 16 | 15, 3 | wcel 1990 |
. . . . . . 7
wff ∪ ran 𝑦 ∈ 𝑢 |
| 17 | | cmap 7857 |
. . . . . . . 8
class
↑𝑚 |
| 18 | 3, 6, 17 | co 6650 |
. . . . . . 7
class (𝑢 ↑𝑚
𝑥) |
| 19 | 16, 9, 18 | wral 2912 |
. . . . . 6
wff
∀𝑦 ∈
(𝑢
↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑢 |
| 20 | 8, 13, 19 | w3a 1037 |
. . . . 5
wff (𝒫
𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑𝑚 𝑥)∪
ran 𝑦 ∈ 𝑢) |
| 21 | 20, 5, 3 | wral 2912 |
. . . 4
wff
∀𝑥 ∈
𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑𝑚 𝑥)∪
ran 𝑦 ∈ 𝑢) |
| 22 | 4, 21 | wa 384 |
. . 3
wff (Tr 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑𝑚 𝑥)∪
ran 𝑦 ∈ 𝑢)) |
| 23 | 22, 2 | cab 2608 |
. 2
class {𝑢 ∣ (Tr 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑𝑚 𝑥)∪
ran 𝑦 ∈ 𝑢))} |
| 24 | 1, 23 | wceq 1483 |
1
wff Univ =
{𝑢 ∣ (Tr 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑𝑚 𝑥)∪
ran 𝑦 ∈ 𝑢))} |