Detailed syntax breakdown of Definition df-gsum
| Step | Hyp | Ref
| Expression |
| 1 | | cgsu 16101 |
. 2
class
Σg |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | vf |
. . 3
setvar 𝑓 |
| 4 | | cvv 3200 |
. . 3
class
V |
| 5 | | vo |
. . . 4
setvar 𝑜 |
| 6 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 7 | 6 | cv 1482 |
. . . . . . . . 9
class 𝑥 |
| 8 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
| 9 | 8 | cv 1482 |
. . . . . . . . 9
class 𝑦 |
| 10 | 2 | cv 1482 |
. . . . . . . . . 10
class 𝑤 |
| 11 | | cplusg 15941 |
. . . . . . . . . 10
class
+g |
| 12 | 10, 11 | cfv 5888 |
. . . . . . . . 9
class
(+g‘𝑤) |
| 13 | 7, 9, 12 | co 6650 |
. . . . . . . 8
class (𝑥(+g‘𝑤)𝑦) |
| 14 | 13, 9 | wceq 1483 |
. . . . . . 7
wff (𝑥(+g‘𝑤)𝑦) = 𝑦 |
| 15 | 9, 7, 12 | co 6650 |
. . . . . . . 8
class (𝑦(+g‘𝑤)𝑥) |
| 16 | 15, 9 | wceq 1483 |
. . . . . . 7
wff (𝑦(+g‘𝑤)𝑥) = 𝑦 |
| 17 | 14, 16 | wa 384 |
. . . . . 6
wff ((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦) |
| 18 | | cbs 15857 |
. . . . . . 7
class
Base |
| 19 | 10, 18 | cfv 5888 |
. . . . . 6
class
(Base‘𝑤) |
| 20 | 17, 8, 19 | wral 2912 |
. . . . 5
wff
∀𝑦 ∈
(Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦) |
| 21 | 20, 6, 19 | crab 2916 |
. . . 4
class {𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} |
| 22 | 3 | cv 1482 |
. . . . . . 7
class 𝑓 |
| 23 | 22 | crn 5115 |
. . . . . 6
class ran 𝑓 |
| 24 | 5 | cv 1482 |
. . . . . 6
class 𝑜 |
| 25 | 23, 24 | wss 3574 |
. . . . 5
wff ran 𝑓 ⊆ 𝑜 |
| 26 | | c0g 16100 |
. . . . . 6
class
0g |
| 27 | 10, 26 | cfv 5888 |
. . . . 5
class
(0g‘𝑤) |
| 28 | 22 | cdm 5114 |
. . . . . . 7
class dom 𝑓 |
| 29 | | cfz 12326 |
. . . . . . . 8
class
... |
| 30 | 29 | crn 5115 |
. . . . . . 7
class ran
... |
| 31 | 28, 30 | wcel 1990 |
. . . . . 6
wff dom 𝑓 ∈ ran ... |
| 32 | | vm |
. . . . . . . . . . . . 13
setvar 𝑚 |
| 33 | 32 | cv 1482 |
. . . . . . . . . . . 12
class 𝑚 |
| 34 | | vn |
. . . . . . . . . . . . 13
setvar 𝑛 |
| 35 | 34 | cv 1482 |
. . . . . . . . . . . 12
class 𝑛 |
| 36 | 33, 35, 29 | co 6650 |
. . . . . . . . . . 11
class (𝑚...𝑛) |
| 37 | 28, 36 | wceq 1483 |
. . . . . . . . . 10
wff dom 𝑓 = (𝑚...𝑛) |
| 38 | 12, 22, 33 | cseq 12801 |
. . . . . . . . . . . 12
class seq𝑚((+g‘𝑤), 𝑓) |
| 39 | 35, 38 | cfv 5888 |
. . . . . . . . . . 11
class (seq𝑚((+g‘𝑤), 𝑓)‘𝑛) |
| 40 | 7, 39 | wceq 1483 |
. . . . . . . . . 10
wff 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛) |
| 41 | 37, 40 | wa 384 |
. . . . . . . . 9
wff (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) |
| 42 | | cuz 11687 |
. . . . . . . . . 10
class
ℤ≥ |
| 43 | 33, 42 | cfv 5888 |
. . . . . . . . 9
class
(ℤ≥‘𝑚) |
| 44 | 41, 34, 43 | wrex 2913 |
. . . . . . . 8
wff
∃𝑛 ∈
(ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) |
| 45 | 44, 32 | wex 1704 |
. . . . . . 7
wff
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) |
| 46 | 45, 6 | cio 5849 |
. . . . . 6
class
(℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))) |
| 47 | | c1 9937 |
. . . . . . . . . . . 12
class
1 |
| 48 | | chash 13117 |
. . . . . . . . . . . . 13
class
# |
| 49 | 9, 48 | cfv 5888 |
. . . . . . . . . . . 12
class
(#‘𝑦) |
| 50 | 47, 49, 29 | co 6650 |
. . . . . . . . . . 11
class
(1...(#‘𝑦)) |
| 51 | | vg |
. . . . . . . . . . . 12
setvar 𝑔 |
| 52 | 51 | cv 1482 |
. . . . . . . . . . 11
class 𝑔 |
| 53 | 50, 9, 52 | wf1o 5887 |
. . . . . . . . . 10
wff 𝑔:(1...(#‘𝑦))–1-1-onto→𝑦 |
| 54 | 22, 52 | ccom 5118 |
. . . . . . . . . . . . 13
class (𝑓 ∘ 𝑔) |
| 55 | 12, 54, 47 | cseq 12801 |
. . . . . . . . . . . 12
class
seq1((+g‘𝑤), (𝑓 ∘ 𝑔)) |
| 56 | 49, 55 | cfv 5888 |
. . . . . . . . . . 11
class
(seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(#‘𝑦)) |
| 57 | 7, 56 | wceq 1483 |
. . . . . . . . . 10
wff 𝑥 =
(seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(#‘𝑦)) |
| 58 | 53, 57 | wa 384 |
. . . . . . . . 9
wff (𝑔:(1...(#‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(#‘𝑦))) |
| 59 | 22 | ccnv 5113 |
. . . . . . . . . 10
class ◡𝑓 |
| 60 | 4, 24 | cdif 3571 |
. . . . . . . . . 10
class (V
∖ 𝑜) |
| 61 | 59, 60 | cima 5117 |
. . . . . . . . 9
class (◡𝑓 “ (V ∖ 𝑜)) |
| 62 | 58, 8, 61 | wsbc 3435 |
. . . . . . . 8
wff
[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(#‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(#‘𝑦))) |
| 63 | 62, 51 | wex 1704 |
. . . . . . 7
wff
∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(#‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(#‘𝑦))) |
| 64 | 63, 6 | cio 5849 |
. . . . . 6
class
(℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(#‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(#‘𝑦)))) |
| 65 | 31, 46, 64 | cif 4086 |
. . . . 5
class if(dom
𝑓 ∈ ran ...,
(℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(#‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(#‘𝑦))))) |
| 66 | 25, 27, 65 | cif 4086 |
. . . 4
class if(ran
𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(#‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(#‘𝑦)))))) |
| 67 | 5, 21, 66 | csb 3533 |
. . 3
class
⦋{𝑥
∈ (Base‘𝑤)
∣ ∀𝑦 ∈
(Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(#‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(#‘𝑦)))))) |
| 68 | 2, 3, 4, 4, 67 | cmpt2 6652 |
. 2
class (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(#‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(#‘𝑦))))))) |
| 69 | 1, 68 | wceq 1483 |
1
wff
Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(#‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(#‘𝑦))))))) |