| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-hfsum | Structured version Visualization version GIF version | ||
| Description: Define the sum of two Hilbert space functionals. Definition of [Beran] p. 111. Note that unlike some authors, we define a functional as any function from ℋ to ℂ, not just linear (or bounded linear) ones. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-hfsum | ⊢ +fn = (𝑓 ∈ (ℂ ↑𝑚 ℋ), 𝑔 ∈ (ℂ ↑𝑚 ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) + (𝑔‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chfs 27798 | . 2 class +fn | |
| 2 | vf | . . 3 setvar 𝑓 | |
| 3 | vg | . . 3 setvar 𝑔 | |
| 4 | cc 9934 | . . . 4 class ℂ | |
| 5 | chil 27776 | . . . 4 class ℋ | |
| 6 | cmap 7857 | . . . 4 class ↑𝑚 | |
| 7 | 4, 5, 6 | co 6650 | . . 3 class (ℂ ↑𝑚 ℋ) |
| 8 | vx | . . . 4 setvar 𝑥 | |
| 9 | 8 | cv 1482 | . . . . . 6 class 𝑥 |
| 10 | 2 | cv 1482 | . . . . . 6 class 𝑓 |
| 11 | 9, 10 | cfv 5888 | . . . . 5 class (𝑓‘𝑥) |
| 12 | 3 | cv 1482 | . . . . . 6 class 𝑔 |
| 13 | 9, 12 | cfv 5888 | . . . . 5 class (𝑔‘𝑥) |
| 14 | caddc 9939 | . . . . 5 class + | |
| 15 | 11, 13, 14 | co 6650 | . . . 4 class ((𝑓‘𝑥) + (𝑔‘𝑥)) |
| 16 | 8, 5, 15 | cmpt 4729 | . . 3 class (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) + (𝑔‘𝑥))) |
| 17 | 2, 3, 7, 7, 16 | cmpt2 6652 | . 2 class (𝑓 ∈ (ℂ ↑𝑚 ℋ), 𝑔 ∈ (ℂ ↑𝑚 ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) + (𝑔‘𝑥)))) |
| 18 | 1, 17 | wceq 1483 | 1 wff +fn = (𝑓 ∈ (ℂ ↑𝑚 ℋ), 𝑔 ∈ (ℂ ↑𝑚 ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) + (𝑔‘𝑥)))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: hfsmval 28597 |
| Copyright terms: Public domain | W3C validator |