Detailed syntax breakdown of Definition df-homlimb
| Step | Hyp | Ref
| Expression |
| 1 | | chlb 31524 |
. 2
class
HomLimB |
| 2 | | vf |
. . 3
setvar 𝑓 |
| 3 | | cvv 3200 |
. . 3
class
V |
| 4 | | vv |
. . . 4
setvar 𝑣 |
| 5 | | vn |
. . . . 5
setvar 𝑛 |
| 6 | | cn 11020 |
. . . . 5
class
ℕ |
| 7 | 5 | cv 1482 |
. . . . . . 7
class 𝑛 |
| 8 | 7 | csn 4177 |
. . . . . 6
class {𝑛} |
| 9 | 2 | cv 1482 |
. . . . . . . 8
class 𝑓 |
| 10 | 7, 9 | cfv 5888 |
. . . . . . 7
class (𝑓‘𝑛) |
| 11 | 10 | cdm 5114 |
. . . . . 6
class dom
(𝑓‘𝑛) |
| 12 | 8, 11 | cxp 5112 |
. . . . 5
class ({𝑛} × dom (𝑓‘𝑛)) |
| 13 | 5, 6, 12 | ciun 4520 |
. . . 4
class ∪ 𝑛 ∈ ℕ ({𝑛} × dom (𝑓‘𝑛)) |
| 14 | | ve |
. . . . 5
setvar 𝑒 |
| 15 | 4 | cv 1482 |
. . . . . . . . 9
class 𝑣 |
| 16 | | vs |
. . . . . . . . . 10
setvar 𝑠 |
| 17 | 16 | cv 1482 |
. . . . . . . . 9
class 𝑠 |
| 18 | 15, 17 | wer 7739 |
. . . . . . . 8
wff 𝑠 Er 𝑣 |
| 19 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 20 | 19 | cv 1482 |
. . . . . . . . . . . . 13
class 𝑥 |
| 21 | | c1st 7166 |
. . . . . . . . . . . . 13
class
1st |
| 22 | 20, 21 | cfv 5888 |
. . . . . . . . . . . 12
class
(1st ‘𝑥) |
| 23 | | c1 9937 |
. . . . . . . . . . . 12
class
1 |
| 24 | | caddc 9939 |
. . . . . . . . . . . 12
class
+ |
| 25 | 22, 23, 24 | co 6650 |
. . . . . . . . . . 11
class
((1st ‘𝑥) + 1) |
| 26 | | c2nd 7167 |
. . . . . . . . . . . . 13
class
2nd |
| 27 | 20, 26 | cfv 5888 |
. . . . . . . . . . . 12
class
(2nd ‘𝑥) |
| 28 | 22, 9 | cfv 5888 |
. . . . . . . . . . . 12
class (𝑓‘(1st
‘𝑥)) |
| 29 | 27, 28 | cfv 5888 |
. . . . . . . . . . 11
class ((𝑓‘(1st
‘𝑥))‘(2nd ‘𝑥)) |
| 30 | 25, 29 | cop 4183 |
. . . . . . . . . 10
class
〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉 |
| 31 | 19, 15, 30 | cmpt 4729 |
. . . . . . . . 9
class (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉) |
| 32 | 31, 17 | wss 3574 |
. . . . . . . 8
wff (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉) ⊆
𝑠 |
| 33 | 18, 32 | wa 384 |
. . . . . . 7
wff (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉) ⊆
𝑠) |
| 34 | 33, 16 | cab 2608 |
. . . . . 6
class {𝑠 ∣ (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉) ⊆
𝑠)} |
| 35 | 34 | cint 4475 |
. . . . 5
class ∩ {𝑠
∣ (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉) ⊆
𝑠)} |
| 36 | 14 | cv 1482 |
. . . . . . 7
class 𝑒 |
| 37 | 15, 36 | cqs 7741 |
. . . . . 6
class (𝑣 / 𝑒) |
| 38 | 7, 20 | cop 4183 |
. . . . . . . . 9
class
〈𝑛, 𝑥〉 |
| 39 | 38, 36 | cec 7740 |
. . . . . . . 8
class
[〈𝑛, 𝑥〉]𝑒 |
| 40 | 19, 11, 39 | cmpt 4729 |
. . . . . . 7
class (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒) |
| 41 | 5, 6, 40 | cmpt 4729 |
. . . . . 6
class (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒)) |
| 42 | 37, 41 | cop 4183 |
. . . . 5
class
〈(𝑣 /
𝑒), (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒))〉 |
| 43 | 14, 35, 42 | csb 3533 |
. . . 4
class
⦋∩ {𝑠 ∣ (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉) ⊆
𝑠)} / 𝑒⦌〈(𝑣 / 𝑒), (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒))〉 |
| 44 | 4, 13, 43 | csb 3533 |
. . 3
class
⦋∪ 𝑛 ∈ ℕ ({𝑛} × dom (𝑓‘𝑛)) / 𝑣⦌⦋∩ {𝑠
∣ (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉) ⊆
𝑠)} / 𝑒⦌〈(𝑣 / 𝑒), (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒))〉 |
| 45 | 2, 3, 44 | cmpt 4729 |
. 2
class (𝑓 ∈ V ↦
⦋∪ 𝑛 ∈ ℕ ({𝑛} × dom (𝑓‘𝑛)) / 𝑣⦌⦋∩ {𝑠
∣ (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉) ⊆
𝑠)} / 𝑒⦌〈(𝑣 / 𝑒), (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒))〉) |
| 46 | 1, 45 | wceq 1483 |
1
wff HomLimB =
(𝑓 ∈ V ↦
⦋∪ 𝑛 ∈ ℕ ({𝑛} × dom (𝑓‘𝑛)) / 𝑣⦌⦋∩ {𝑠
∣ (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉) ⊆
𝑠)} / 𝑒⦌〈(𝑣 / 𝑒), (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒))〉) |