| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-lidl | Structured version Visualization version GIF version | ||
| Description: Define the class of left ideals of a given ring. An ideal is a submodule of the ring viewed as a module over itself. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| df-lidl | ⊢ LIdeal = (LSubSp ∘ ringLMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clidl 19170 | . 2 class LIdeal | |
| 2 | clss 18932 | . . 3 class LSubSp | |
| 3 | crglmod 19169 | . . 3 class ringLMod | |
| 4 | 2, 3 | ccom 5118 | . 2 class (LSubSp ∘ ringLMod) |
| 5 | 1, 4 | wceq 1483 | 1 wff LIdeal = (LSubSp ∘ ringLMod) |
| Colors of variables: wff setvar class |
| This definition is referenced by: lidlval 19192 |
| Copyright terms: Public domain | W3C validator |