MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lm Structured version   Visualization version   GIF version

Definition df-lm 21033
Description: Define a function on topologies whose value is the convergence relation for sequences into the given topological space. Although 𝑓 is typically a sequence (a function from an upperset of integers) with values in the topological space, it need not be. Note, however, that the limit property concerns only values at integers, so that the real-valued function (𝑥 ∈ ℝ ↦ (sin‘(π · 𝑥))) converges to zero (in the standard topology on the reals) with this definition. (Contributed by NM, 7-Sep-2006.)
Assertion
Ref Expression
df-lm 𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
Distinct variable group:   𝑓,𝑗,𝑥,𝑦,𝑢

Detailed syntax breakdown of Definition df-lm
StepHypRef Expression
1 clm 21030 . 2 class 𝑡
2 vj . . 3 setvar 𝑗
3 ctop 20698 . . 3 class Top
4 vf . . . . . . 7 setvar 𝑓
54cv 1482 . . . . . 6 class 𝑓
62cv 1482 . . . . . . . 8 class 𝑗
76cuni 4436 . . . . . . 7 class 𝑗
8 cc 9934 . . . . . . 7 class
9 cpm 7858 . . . . . . 7 class pm
107, 8, 9co 6650 . . . . . 6 class ( 𝑗pm ℂ)
115, 10wcel 1990 . . . . 5 wff 𝑓 ∈ ( 𝑗pm ℂ)
12 vx . . . . . . 7 setvar 𝑥
1312cv 1482 . . . . . 6 class 𝑥
1413, 7wcel 1990 . . . . 5 wff 𝑥 𝑗
15 vu . . . . . . . 8 setvar 𝑢
1612, 15wel 1991 . . . . . . 7 wff 𝑥𝑢
17 vy . . . . . . . . . 10 setvar 𝑦
1817cv 1482 . . . . . . . . 9 class 𝑦
1915cv 1482 . . . . . . . . 9 class 𝑢
205, 18cres 5116 . . . . . . . . 9 class (𝑓𝑦)
2118, 19, 20wf 5884 . . . . . . . 8 wff (𝑓𝑦):𝑦𝑢
22 cuz 11687 . . . . . . . . 9 class
2322crn 5115 . . . . . . . 8 class ran ℤ
2421, 17, 23wrex 2913 . . . . . . 7 wff 𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢
2516, 24wi 4 . . . . . 6 wff (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢)
2625, 15, 6wral 2912 . . . . 5 wff 𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢)
2711, 14, 26w3a 1037 . . . 4 wff (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))
2827, 4, 12copab 4712 . . 3 class {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))}
292, 3, 28cmpt 4729 . 2 class (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
301, 29wceq 1483 1 wff 𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
Colors of variables: wff setvar class
This definition is referenced by:  lmrel  21034  lmrcl  21035  lmfval  21036
  Copyright terms: Public domain W3C validator