Detailed syntax breakdown of Definition df-lnfn
| Step | Hyp | Ref
| Expression |
| 1 | | clf 27811 |
. 2
class
LinFn |
| 2 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
| 3 | 2 | cv 1482 |
. . . . . . . . . 10
class 𝑥 |
| 4 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
| 5 | 4 | cv 1482 |
. . . . . . . . . 10
class 𝑦 |
| 6 | | csm 27778 |
. . . . . . . . . 10
class
·ℎ |
| 7 | 3, 5, 6 | co 6650 |
. . . . . . . . 9
class (𝑥
·ℎ 𝑦) |
| 8 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
| 9 | 8 | cv 1482 |
. . . . . . . . 9
class 𝑧 |
| 10 | | cva 27777 |
. . . . . . . . 9
class
+ℎ |
| 11 | 7, 9, 10 | co 6650 |
. . . . . . . 8
class ((𝑥
·ℎ 𝑦) +ℎ 𝑧) |
| 12 | | vt |
. . . . . . . . 9
setvar 𝑡 |
| 13 | 12 | cv 1482 |
. . . . . . . 8
class 𝑡 |
| 14 | 11, 13 | cfv 5888 |
. . . . . . 7
class (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) |
| 15 | 5, 13 | cfv 5888 |
. . . . . . . . 9
class (𝑡‘𝑦) |
| 16 | | cmul 9941 |
. . . . . . . . 9
class
· |
| 17 | 3, 15, 16 | co 6650 |
. . . . . . . 8
class (𝑥 · (𝑡‘𝑦)) |
| 18 | 9, 13 | cfv 5888 |
. . . . . . . 8
class (𝑡‘𝑧) |
| 19 | | caddc 9939 |
. . . . . . . 8
class
+ |
| 20 | 17, 18, 19 | co 6650 |
. . . . . . 7
class ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧)) |
| 21 | 14, 20 | wceq 1483 |
. . . . . 6
wff (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧)) |
| 22 | | chil 27776 |
. . . . . 6
class
ℋ |
| 23 | 21, 8, 22 | wral 2912 |
. . . . 5
wff
∀𝑧 ∈
ℋ (𝑡‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧)) |
| 24 | 23, 4, 22 | wral 2912 |
. . . 4
wff
∀𝑦 ∈
ℋ ∀𝑧 ∈
ℋ (𝑡‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧)) |
| 25 | | cc 9934 |
. . . 4
class
ℂ |
| 26 | 24, 2, 25 | wral 2912 |
. . 3
wff
∀𝑥 ∈
ℂ ∀𝑦 ∈
ℋ ∀𝑧 ∈
ℋ (𝑡‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧)) |
| 27 | | cmap 7857 |
. . . 4
class
↑𝑚 |
| 28 | 25, 22, 27 | co 6650 |
. . 3
class (ℂ
↑𝑚 ℋ) |
| 29 | 26, 12, 28 | crab 2916 |
. 2
class {𝑡 ∈ (ℂ
↑𝑚 ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧))} |
| 30 | 1, 29 | wceq 1483 |
1
wff LinFn =
{𝑡 ∈ (ℂ
↑𝑚 ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧))} |