Detailed syntax breakdown of Definition df-lpidl
| Step | Hyp | Ref
| Expression |
| 1 | | clpidl 19241 |
. 2
class
LPIdeal |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | crg 18547 |
. . 3
class
Ring |
| 4 | | vg |
. . . 4
setvar 𝑔 |
| 5 | 2 | cv 1482 |
. . . . 5
class 𝑤 |
| 6 | | cbs 15857 |
. . . . 5
class
Base |
| 7 | 5, 6 | cfv 5888 |
. . . 4
class
(Base‘𝑤) |
| 8 | 4 | cv 1482 |
. . . . . . 7
class 𝑔 |
| 9 | 8 | csn 4177 |
. . . . . 6
class {𝑔} |
| 10 | | crsp 19171 |
. . . . . . 7
class
RSpan |
| 11 | 5, 10 | cfv 5888 |
. . . . . 6
class
(RSpan‘𝑤) |
| 12 | 9, 11 | cfv 5888 |
. . . . 5
class
((RSpan‘𝑤)‘{𝑔}) |
| 13 | 12 | csn 4177 |
. . . 4
class
{((RSpan‘𝑤)‘{𝑔})} |
| 14 | 4, 7, 13 | ciun 4520 |
. . 3
class ∪ 𝑔 ∈ (Base‘𝑤){((RSpan‘𝑤)‘{𝑔})} |
| 15 | 2, 3, 14 | cmpt 4729 |
. 2
class (𝑤 ∈ Ring ↦ ∪ 𝑔 ∈ (Base‘𝑤){((RSpan‘𝑤)‘{𝑔})}) |
| 16 | 1, 15 | wceq 1483 |
1
wff LPIdeal =
(𝑤 ∈ Ring ↦
∪ 𝑔 ∈ (Base‘𝑤){((RSpan‘𝑤)‘{𝑔})}) |