Detailed syntax breakdown of Definition df-pellfund
| Step | Hyp | Ref
| Expression |
| 1 | | cpellfund 37404 |
. 2
class
PellFund |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cn 11020 |
. . . 4
class
ℕ |
| 4 | | csquarenn 37400 |
. . . 4
class
◻NN |
| 5 | 3, 4 | cdif 3571 |
. . 3
class (ℕ
∖ ◻NN) |
| 6 | | c1 9937 |
. . . . . 6
class
1 |
| 7 | | vz |
. . . . . . 7
setvar 𝑧 |
| 8 | 7 | cv 1482 |
. . . . . 6
class 𝑧 |
| 9 | | clt 10074 |
. . . . . 6
class
< |
| 10 | 6, 8, 9 | wbr 4653 |
. . . . 5
wff 1 <
𝑧 |
| 11 | 2 | cv 1482 |
. . . . . 6
class 𝑥 |
| 12 | | cpell14qr 37403 |
. . . . . 6
class
Pell14QR |
| 13 | 11, 12 | cfv 5888 |
. . . . 5
class
(Pell14QR‘𝑥) |
| 14 | 10, 7, 13 | crab 2916 |
. . . 4
class {𝑧 ∈ (Pell14QR‘𝑥) ∣ 1 < 𝑧} |
| 15 | | cr 9935 |
. . . 4
class
ℝ |
| 16 | 14, 15, 9 | cinf 8347 |
. . 3
class
inf({𝑧 ∈
(Pell14QR‘𝑥) ∣
1 < 𝑧}, ℝ, <
) |
| 17 | 2, 5, 16 | cmpt 4729 |
. 2
class (𝑥 ∈ (ℕ ∖
◻NN) ↦ inf({𝑧 ∈ (Pell14QR‘𝑥) ∣ 1 < 𝑧}, ℝ, < )) |
| 18 | 1, 17 | wceq 1483 |
1
wff PellFund =
(𝑥 ∈ (ℕ ∖
◻NN) ↦ inf({𝑧 ∈ (Pell14QR‘𝑥) ∣ 1 < 𝑧}, ℝ, < )) |