Detailed syntax breakdown of Definition df-psl
| Step | Hyp | Ref
| Expression |
| 1 | | cpsl 31529 |
. 2
class
polySplitLim |
| 2 | | vr |
. . 3
setvar 𝑟 |
| 3 | | vp |
. . 3
setvar 𝑝 |
| 4 | | cvv 3200 |
. . 3
class
V |
| 5 | 2 | cv 1482 |
. . . . . . 7
class 𝑟 |
| 6 | | cbs 15857 |
. . . . . . 7
class
Base |
| 7 | 5, 6 | cfv 5888 |
. . . . . 6
class
(Base‘𝑟) |
| 8 | 7 | cpw 4158 |
. . . . 5
class 𝒫
(Base‘𝑟) |
| 9 | | cfn 7955 |
. . . . 5
class
Fin |
| 10 | 8, 9 | cin 3573 |
. . . 4
class
(𝒫 (Base‘𝑟) ∩ Fin) |
| 11 | | cn 11020 |
. . . 4
class
ℕ |
| 12 | | cmap 7857 |
. . . 4
class
↑𝑚 |
| 13 | 10, 11, 12 | co 6650 |
. . 3
class
((𝒫 (Base‘𝑟) ∩ Fin) ↑𝑚
ℕ) |
| 14 | | vf |
. . . 4
setvar 𝑓 |
| 15 | | c1st 7166 |
. . . . 5
class
1st |
| 16 | | vg |
. . . . . . 7
setvar 𝑔 |
| 17 | | vq |
. . . . . . 7
setvar 𝑞 |
| 18 | | ve |
. . . . . . . 8
setvar 𝑒 |
| 19 | 16 | cv 1482 |
. . . . . . . . 9
class 𝑔 |
| 20 | 19, 15 | cfv 5888 |
. . . . . . . 8
class
(1st ‘𝑔) |
| 21 | | vs |
. . . . . . . . 9
setvar 𝑠 |
| 22 | 18 | cv 1482 |
. . . . . . . . . 10
class 𝑒 |
| 23 | 22, 15 | cfv 5888 |
. . . . . . . . 9
class
(1st ‘𝑒) |
| 24 | 21 | cv 1482 |
. . . . . . . . . . 11
class 𝑠 |
| 25 | | vx |
. . . . . . . . . . . . 13
setvar 𝑥 |
| 26 | 17 | cv 1482 |
. . . . . . . . . . . . 13
class 𝑞 |
| 27 | 25 | cv 1482 |
. . . . . . . . . . . . . 14
class 𝑥 |
| 28 | | c2nd 7167 |
. . . . . . . . . . . . . . 15
class
2nd |
| 29 | 19, 28 | cfv 5888 |
. . . . . . . . . . . . . 14
class
(2nd ‘𝑔) |
| 30 | 27, 29 | ccom 5118 |
. . . . . . . . . . . . 13
class (𝑥 ∘ (2nd
‘𝑔)) |
| 31 | 25, 26, 30 | cmpt 4729 |
. . . . . . . . . . . 12
class (𝑥 ∈ 𝑞 ↦ (𝑥 ∘ (2nd ‘𝑔))) |
| 32 | 31 | crn 5115 |
. . . . . . . . . . 11
class ran
(𝑥 ∈ 𝑞 ↦ (𝑥 ∘ (2nd ‘𝑔))) |
| 33 | | csf 31528 |
. . . . . . . . . . 11
class
splitFld |
| 34 | 24, 32, 33 | co 6650 |
. . . . . . . . . 10
class (𝑠 splitFld ran (𝑥 ∈ 𝑞 ↦ (𝑥 ∘ (2nd ‘𝑔)))) |
| 35 | 14 | cv 1482 |
. . . . . . . . . . 11
class 𝑓 |
| 36 | 35, 28 | cfv 5888 |
. . . . . . . . . . . 12
class
(2nd ‘𝑓) |
| 37 | 29, 36 | ccom 5118 |
. . . . . . . . . . 11
class
((2nd ‘𝑔) ∘ (2nd ‘𝑓)) |
| 38 | 35, 37 | cop 4183 |
. . . . . . . . . 10
class
〈𝑓,
((2nd ‘𝑔)
∘ (2nd ‘𝑓))〉 |
| 39 | 14, 34, 38 | csb 3533 |
. . . . . . . . 9
class
⦋(𝑠
splitFld ran (𝑥 ∈
𝑞 ↦ (𝑥 ∘ (2nd
‘𝑔)))) / 𝑓⦌〈𝑓, ((2nd ‘𝑔) ∘ (2nd
‘𝑓))〉 |
| 40 | 21, 23, 39 | csb 3533 |
. . . . . . . 8
class
⦋(1st ‘𝑒) / 𝑠⦌⦋(𝑠 splitFld ran (𝑥 ∈ 𝑞 ↦ (𝑥 ∘ (2nd ‘𝑔)))) / 𝑓⦌〈𝑓, ((2nd ‘𝑔) ∘ (2nd ‘𝑓))〉 |
| 41 | 18, 20, 40 | csb 3533 |
. . . . . . 7
class
⦋(1st ‘𝑔) / 𝑒⦌⦋(1st
‘𝑒) / 𝑠⦌⦋(𝑠 splitFld ran (𝑥 ∈ 𝑞 ↦ (𝑥 ∘ (2nd ‘𝑔)))) / 𝑓⦌〈𝑓, ((2nd ‘𝑔) ∘ (2nd ‘𝑓))〉 |
| 42 | 16, 17, 4, 4, 41 | cmpt2 6652 |
. . . . . 6
class (𝑔 ∈ V, 𝑞 ∈ V ↦
⦋(1st ‘𝑔) / 𝑒⦌⦋(1st
‘𝑒) / 𝑠⦌⦋(𝑠 splitFld ran (𝑥 ∈ 𝑞 ↦ (𝑥 ∘ (2nd ‘𝑔)))) / 𝑓⦌〈𝑓, ((2nd ‘𝑔) ∘ (2nd ‘𝑓))〉) |
| 43 | 3 | cv 1482 |
. . . . . . 7
class 𝑝 |
| 44 | | cc0 9936 |
. . . . . . . . 9
class
0 |
| 45 | | c0 3915 |
. . . . . . . . . . 11
class
∅ |
| 46 | 5, 45 | cop 4183 |
. . . . . . . . . 10
class
〈𝑟,
∅〉 |
| 47 | | cid 5023 |
. . . . . . . . . . 11
class
I |
| 48 | 47, 7 | cres 5116 |
. . . . . . . . . 10
class ( I
↾ (Base‘𝑟)) |
| 49 | 46, 48 | cop 4183 |
. . . . . . . . 9
class
〈〈𝑟,
∅〉, ( I ↾ (Base‘𝑟))〉 |
| 50 | 44, 49 | cop 4183 |
. . . . . . . 8
class 〈0,
〈〈𝑟,
∅〉, ( I ↾ (Base‘𝑟))〉〉 |
| 51 | 50 | csn 4177 |
. . . . . . 7
class {〈0,
〈〈𝑟,
∅〉, ( I ↾ (Base‘𝑟))〉〉} |
| 52 | 43, 51 | cun 3572 |
. . . . . 6
class (𝑝 ∪ {〈0,
〈〈𝑟,
∅〉, ( I ↾ (Base‘𝑟))〉〉}) |
| 53 | 42, 52, 44 | cseq 12801 |
. . . . 5
class
seq0((𝑔 ∈ V,
𝑞 ∈ V ↦
⦋(1st ‘𝑔) / 𝑒⦌⦋(1st
‘𝑒) / 𝑠⦌⦋(𝑠 splitFld ran (𝑥 ∈ 𝑞 ↦ (𝑥 ∘ (2nd ‘𝑔)))) / 𝑓⦌〈𝑓, ((2nd ‘𝑔) ∘ (2nd ‘𝑓))〉), (𝑝 ∪ {〈0, 〈〈𝑟, ∅〉, ( I ↾
(Base‘𝑟))〉〉})) |
| 54 | 15, 53 | ccom 5118 |
. . . 4
class
(1st ∘ seq0((𝑔 ∈ V, 𝑞 ∈ V ↦
⦋(1st ‘𝑔) / 𝑒⦌⦋(1st
‘𝑒) / 𝑠⦌⦋(𝑠 splitFld ran (𝑥 ∈ 𝑞 ↦ (𝑥 ∘ (2nd ‘𝑔)))) / 𝑓⦌〈𝑓, ((2nd ‘𝑔) ∘ (2nd ‘𝑓))〉), (𝑝 ∪ {〈0, 〈〈𝑟, ∅〉, ( I ↾
(Base‘𝑟))〉〉}))) |
| 55 | | c1 9937 |
. . . . . . 7
class
1 |
| 56 | | cshi 13806 |
. . . . . . 7
class
shift |
| 57 | 35, 55, 56 | co 6650 |
. . . . . 6
class (𝑓 shift 1) |
| 58 | 15, 57 | ccom 5118 |
. . . . 5
class
(1st ∘ (𝑓 shift 1)) |
| 59 | 28, 35 | ccom 5118 |
. . . . 5
class
(2nd ∘ 𝑓) |
| 60 | | chlim 31525 |
. . . . 5
class
HomLim |
| 61 | 58, 59, 60 | co 6650 |
. . . 4
class
((1st ∘ (𝑓 shift 1)) HomLim (2nd ∘
𝑓)) |
| 62 | 14, 54, 61 | csb 3533 |
. . 3
class
⦋(1st ∘ seq0((𝑔 ∈ V, 𝑞 ∈ V ↦
⦋(1st ‘𝑔) / 𝑒⦌⦋(1st
‘𝑒) / 𝑠⦌⦋(𝑠 splitFld ran (𝑥 ∈ 𝑞 ↦ (𝑥 ∘ (2nd ‘𝑔)))) / 𝑓⦌〈𝑓, ((2nd ‘𝑔) ∘ (2nd ‘𝑓))〉), (𝑝 ∪ {〈0, 〈〈𝑟, ∅〉, ( I ↾
(Base‘𝑟))〉〉}))) / 𝑓⦌((1st ∘
(𝑓 shift 1)) HomLim
(2nd ∘ 𝑓)) |
| 63 | 2, 3, 4, 13, 62 | cmpt2 6652 |
. 2
class (𝑟 ∈ V, 𝑝 ∈ ((𝒫 (Base‘𝑟) ∩ Fin)
↑𝑚 ℕ) ↦ ⦋(1st
∘ seq0((𝑔 ∈ V,
𝑞 ∈ V ↦
⦋(1st ‘𝑔) / 𝑒⦌⦋(1st
‘𝑒) / 𝑠⦌⦋(𝑠 splitFld ran (𝑥 ∈ 𝑞 ↦ (𝑥 ∘ (2nd ‘𝑔)))) / 𝑓⦌〈𝑓, ((2nd ‘𝑔) ∘ (2nd ‘𝑓))〉), (𝑝 ∪ {〈0, 〈〈𝑟, ∅〉, ( I ↾
(Base‘𝑟))〉〉}))) / 𝑓⦌((1st ∘
(𝑓 shift 1)) HomLim
(2nd ∘ 𝑓))) |
| 64 | 1, 63 | wceq 1483 |
1
wff
polySplitLim = (𝑟 ∈ V,
𝑝 ∈ ((𝒫
(Base‘𝑟) ∩ Fin)
↑𝑚 ℕ) ↦ ⦋(1st
∘ seq0((𝑔 ∈ V,
𝑞 ∈ V ↦
⦋(1st ‘𝑔) / 𝑒⦌⦋(1st
‘𝑒) / 𝑠⦌⦋(𝑠 splitFld ran (𝑥 ∈ 𝑞 ↦ (𝑥 ∘ (2nd ‘𝑔)))) / 𝑓⦌〈𝑓, ((2nd ‘𝑔) ∘ (2nd ‘𝑓))〉), (𝑝 ∪ {〈0, 〈〈𝑟, ∅〉, ( I ↾
(Base‘𝑟))〉〉}))) / 𝑓⦌((1st ∘
(𝑓 shift 1)) HomLim
(2nd ∘ 𝑓))) |