Detailed syntax breakdown of Definition df-qpa
| Step | Hyp | Ref
| Expression |
| 1 | | cqpa 31546 |
. 2
class
_Qp |
| 2 | | vp |
. . 3
setvar 𝑝 |
| 3 | | cprime 15385 |
. . 3
class
ℙ |
| 4 | | vr |
. . . 4
setvar 𝑟 |
| 5 | 2 | cv 1482 |
. . . . 5
class 𝑝 |
| 6 | | cqp 31543 |
. . . . 5
class
Qp |
| 7 | 5, 6 | cfv 5888 |
. . . 4
class
(Qp‘𝑝) |
| 8 | 4 | cv 1482 |
. . . . 5
class 𝑟 |
| 9 | | vn |
. . . . . 6
setvar 𝑛 |
| 10 | | cn 11020 |
. . . . . 6
class
ℕ |
| 11 | | vf |
. . . . . . . . . . 11
setvar 𝑓 |
| 12 | 11 | cv 1482 |
. . . . . . . . . 10
class 𝑓 |
| 13 | | cdg1 23814 |
. . . . . . . . . 10
class
deg1 |
| 14 | 8, 12, 13 | co 6650 |
. . . . . . . . 9
class (𝑟 deg1 𝑓) |
| 15 | 9 | cv 1482 |
. . . . . . . . 9
class 𝑛 |
| 16 | | cle 10075 |
. . . . . . . . 9
class
≤ |
| 17 | 14, 15, 16 | wbr 4653 |
. . . . . . . 8
wff (𝑟 deg1 𝑓) ≤ 𝑛 |
| 18 | | vd |
. . . . . . . . . . . . 13
setvar 𝑑 |
| 19 | 18 | cv 1482 |
. . . . . . . . . . . 12
class 𝑑 |
| 20 | 19 | ccnv 5113 |
. . . . . . . . . . 11
class ◡𝑑 |
| 21 | | cz 11377 |
. . . . . . . . . . . 12
class
ℤ |
| 22 | | cc0 9936 |
. . . . . . . . . . . . 13
class
0 |
| 23 | 22 | csn 4177 |
. . . . . . . . . . . 12
class
{0} |
| 24 | 21, 23 | cdif 3571 |
. . . . . . . . . . 11
class (ℤ
∖ {0}) |
| 25 | 20, 24 | cima 5117 |
. . . . . . . . . 10
class (◡𝑑 “ (ℤ ∖
{0})) |
| 26 | | cfz 12326 |
. . . . . . . . . . 11
class
... |
| 27 | 22, 15, 26 | co 6650 |
. . . . . . . . . 10
class
(0...𝑛) |
| 28 | 25, 27 | wss 3574 |
. . . . . . . . 9
wff (◡𝑑 “ (ℤ ∖ {0})) ⊆
(0...𝑛) |
| 29 | | cco1 19548 |
. . . . . . . . . . 11
class
coe1 |
| 30 | 12, 29 | cfv 5888 |
. . . . . . . . . 10
class
(coe1‘𝑓) |
| 31 | 30 | crn 5115 |
. . . . . . . . 9
class ran
(coe1‘𝑓) |
| 32 | 28, 18, 31 | wral 2912 |
. . . . . . . 8
wff
∀𝑑 ∈ ran
(coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆
(0...𝑛) |
| 33 | 17, 32 | wa 384 |
. . . . . . 7
wff ((𝑟 deg1 𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆
(0...𝑛)) |
| 34 | | cpl1 19547 |
. . . . . . . 8
class
Poly1 |
| 35 | 8, 34 | cfv 5888 |
. . . . . . 7
class
(Poly1‘𝑟) |
| 36 | 33, 11, 35 | crab 2916 |
. . . . . 6
class {𝑓 ∈
(Poly1‘𝑟)
∣ ((𝑟 deg1
𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆
(0...𝑛))} |
| 37 | 9, 10, 36 | cmpt 4729 |
. . . . 5
class (𝑛 ∈ ℕ ↦ {𝑓 ∈
(Poly1‘𝑟)
∣ ((𝑟 deg1
𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆
(0...𝑛))}) |
| 38 | | cpsl 31529 |
. . . . 5
class
polySplitLim |
| 39 | 8, 37, 38 | co 6650 |
. . . 4
class (𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {𝑓 ∈
(Poly1‘𝑟)
∣ ((𝑟 deg1
𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆
(0...𝑛))})) |
| 40 | 4, 7, 39 | csb 3533 |
. . 3
class
⦋(Qp‘𝑝) / 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {𝑓 ∈ (Poly1‘𝑟) ∣ ((𝑟 deg1 𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆
(0...𝑛))})) |
| 41 | 2, 3, 40 | cmpt 4729 |
. 2
class (𝑝 ∈ ℙ ↦
⦋(Qp‘𝑝)
/ 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {𝑓 ∈
(Poly1‘𝑟)
∣ ((𝑟 deg1
𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆
(0...𝑛))}))) |
| 42 | 1, 41 | wceq 1483 |
1
wff _Qp =
(𝑝 ∈ ℙ ↦
⦋(Qp‘𝑝)
/ 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {𝑓 ∈
(Poly1‘𝑟)
∣ ((𝑟 deg1
𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆
(0...𝑛))}))) |