| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-rusgr | Structured version Visualization version GIF version | ||
| Description: Define the "k-regular simple graph" predicate, which is true for a simple graph being k-regular: read 𝐺 RegUSGraph 𝐾 as 𝐺 is a 𝐾-regular simple graph. (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
| Ref | Expression |
|---|---|
| df-rusgr | ⊢ RegUSGraph = {〈𝑔, 𝑘〉 ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crusgr 26452 | . 2 class RegUSGraph | |
| 2 | vg | . . . . . 6 setvar 𝑔 | |
| 3 | 2 | cv 1482 | . . . . 5 class 𝑔 |
| 4 | cusgr 26044 | . . . . 5 class USGraph | |
| 5 | 3, 4 | wcel 1990 | . . . 4 wff 𝑔 ∈ USGraph |
| 6 | vk | . . . . . 6 setvar 𝑘 | |
| 7 | 6 | cv 1482 | . . . . 5 class 𝑘 |
| 8 | crgr 26451 | . . . . 5 class RegGraph | |
| 9 | 3, 7, 8 | wbr 4653 | . . . 4 wff 𝑔 RegGraph 𝑘 |
| 10 | 5, 9 | wa 384 | . . 3 wff (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘) |
| 11 | 10, 2, 6 | copab 4712 | . 2 class {〈𝑔, 𝑘〉 ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)} |
| 12 | 1, 11 | wceq 1483 | 1 wff RegUSGraph = {〈𝑔, 𝑘〉 ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isrusgr 26457 rusgrprop 26458 |
| Copyright terms: Public domain | W3C validator |