| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-s7 | Structured version Visualization version GIF version | ||
| Description: Define the length 7 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| df-s7 | ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 ++ 〈“𝐺”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | cD | . . 3 class 𝐷 | |
| 5 | cE | . . 3 class 𝐸 | |
| 6 | cF | . . 3 class 𝐹 | |
| 7 | cG | . . 3 class 𝐺 | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | cs7 13591 | . 2 class 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 |
| 9 | 1, 2, 3, 4, 5, 6 | cs6 13590 | . . 3 class 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 |
| 10 | 7 | cs1 13294 | . . 3 class 〈“𝐺”〉 |
| 11 | cconcat 13293 | . . 3 class ++ | |
| 12 | 9, 10, 11 | co 6650 | . 2 class (〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 ++ 〈“𝐺”〉) |
| 13 | 8, 12 | wceq 1483 | 1 wff 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 ++ 〈“𝐺”〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: s7eqd 13613 s7cld 13621 s7cli 13630 s7len 13647 s1s6 13672 s1s7 13673 s4s3 13676 s5s2 13680 konigsberglem1 27114 konigsberglem2 27115 konigsberglem3 27116 |
| Copyright terms: Public domain | W3C validator |