MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sets Structured version   Visualization version   GIF version

Definition df-sets 15864
Description: Set a component of an extensible structure. This function is useful for taking an existing structure and "overriding" one of its components. For example, df-ress 15865 adjusts the base set to match its second argument, which has the effect of making subgroups, subspaces, subrings etc. from the original structures. Or df-mgp 18490, which takes a ring and overrides its addition operation with the multiplicative operation, so that we can consider the "multiplicative group" using group and monoid theorems, which expect the operation to be in the +g slot instead of the .r slot. (Contributed by Mario Carneiro, 1-Dec-2014.)
Assertion
Ref Expression
df-sets sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
Distinct variable group:   𝑒,𝑠

Detailed syntax breakdown of Definition df-sets
StepHypRef Expression
1 csts 15855 . 2 class sSet
2 vs . . 3 setvar 𝑠
3 ve . . 3 setvar 𝑒
4 cvv 3200 . . 3 class V
52cv 1482 . . . . 5 class 𝑠
63cv 1482 . . . . . . . 8 class 𝑒
76csn 4177 . . . . . . 7 class {𝑒}
87cdm 5114 . . . . . 6 class dom {𝑒}
94, 8cdif 3571 . . . . 5 class (V ∖ dom {𝑒})
105, 9cres 5116 . . . 4 class (𝑠 ↾ (V ∖ dom {𝑒}))
1110, 7cun 3572 . . 3 class ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})
122, 3, 4, 4, 11cmpt2 6652 . 2 class (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
131, 12wceq 1483 1 wff sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
Colors of variables: wff setvar class
This definition is referenced by:  reldmsets  15886  setsvalg  15887
  Copyright terms: Public domain W3C validator