![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-sets | Structured version Visualization version GIF version |
Description: Set a component of an extensible structure. This function is useful for taking an existing structure and "overriding" one of its components. For example, df-ress 15865 adjusts the base set to match its second argument, which has the effect of making subgroups, subspaces, subrings etc. from the original structures. Or df-mgp 18490, which takes a ring and overrides its addition operation with the multiplicative operation, so that we can consider the "multiplicative group" using group and monoid theorems, which expect the operation to be in the +g slot instead of the .r slot. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
df-sets | ⊢ sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csts 15855 | . 2 class sSet | |
2 | vs | . . 3 setvar 𝑠 | |
3 | ve | . . 3 setvar 𝑒 | |
4 | cvv 3200 | . . 3 class V | |
5 | 2 | cv 1482 | . . . . 5 class 𝑠 |
6 | 3 | cv 1482 | . . . . . . . 8 class 𝑒 |
7 | 6 | csn 4177 | . . . . . . 7 class {𝑒} |
8 | 7 | cdm 5114 | . . . . . 6 class dom {𝑒} |
9 | 4, 8 | cdif 3571 | . . . . 5 class (V ∖ dom {𝑒}) |
10 | 5, 9 | cres 5116 | . . . 4 class (𝑠 ↾ (V ∖ dom {𝑒})) |
11 | 10, 7 | cun 3572 | . . 3 class ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}) |
12 | 2, 3, 4, 4, 11 | cmpt2 6652 | . 2 class (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) |
13 | 1, 12 | wceq 1483 | 1 wff sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) |
Colors of variables: wff setvar class |
This definition is referenced by: reldmsets 15886 setsvalg 15887 |
Copyright terms: Public domain | W3C validator |