Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-singleton Structured version   Visualization version   GIF version

Definition df-singleton 31969
Description: Define the singleton function. See brsingle 32024 for its value. (Contributed by Scott Fenton, 4-Apr-2014.)
Assertion
Ref Expression
df-singleton Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))

Detailed syntax breakdown of Definition df-singleton
StepHypRef Expression
1 csingle 31945 . 2 class Singleton
2 cvv 3200 . . . 4 class V
32, 2cxp 5112 . . 3 class (V × V)
4 cep 5028 . . . . . 6 class E
52, 4ctxp 31937 . . . . 5 class (V ⊗ E )
6 cid 5023 . . . . . 6 class I
76, 2ctxp 31937 . . . . 5 class ( I ⊗ V)
85, 7csymdif 3843 . . . 4 class ((V ⊗ E ) △ ( I ⊗ V))
98crn 5115 . . 3 class ran ((V ⊗ E ) △ ( I ⊗ V))
103, 9cdif 3571 . 2 class ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))
111, 10wceq 1483 1 wff Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))
Colors of variables: wff setvar class
This definition is referenced by:  brsingle  32024  fnsingle  32026
  Copyright terms: Public domain W3C validator