Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-sinh Structured version   Visualization version   GIF version

Definition df-sinh 42474
Description: Define the hyperbolic sine function (sinh). We define it this way for cmpt 4729, which requires the form (𝑥𝐴𝐵). See sinhval-named 42477 for a simple way to evaluate it. We define this function by dividing by i, which uses fewer operations than many conventional definitions (and thus is more convenient to use in metamath). See sinh-conventional 42480 for a justification that our definition is the same as the conventional definition of sinh used in other sources. (Contributed by David A. Wheeler, 20-Apr-2015.)
Assertion
Ref Expression
df-sinh sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i))

Detailed syntax breakdown of Definition df-sinh
StepHypRef Expression
1 csinh 42471 . 2 class sinh
2 vx . . 3 setvar 𝑥
3 cc 9934 . . 3 class
4 ci 9938 . . . . . 6 class i
52cv 1482 . . . . . 6 class 𝑥
6 cmul 9941 . . . . . 6 class ·
74, 5, 6co 6650 . . . . 5 class (i · 𝑥)
8 csin 14794 . . . . 5 class sin
97, 8cfv 5888 . . . 4 class (sin‘(i · 𝑥))
10 cdiv 10684 . . . 4 class /
119, 4, 10co 6650 . . 3 class ((sin‘(i · 𝑥)) / i)
122, 3, 11cmpt 4729 . 2 class (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i))
131, 12wceq 1483 1 wff sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i))
Colors of variables: wff setvar class
This definition is referenced by:  sinhval-named  42477
  Copyright terms: Public domain W3C validator