MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-uncf Structured version   Visualization version   GIF version

Definition df-uncf 16855
Description: Define the uncurry functor, which can be defined equationally using evalF. Strictly speaking, the third category argument is not needed, since the resulting functor is extensionally equal regardless, but it is used in the equational definition and is too much work to remove. (Contributed by Mario Carneiro, 13-Jan-2017.)
Assertion
Ref Expression
df-uncf uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))))
Distinct variable group:   𝑓,𝑐

Detailed syntax breakdown of Definition df-uncf
StepHypRef Expression
1 cuncf 16851 . 2 class uncurryF
2 vc . . 3 setvar 𝑐
3 vf . . 3 setvar 𝑓
4 cvv 3200 . . 3 class V
5 c1 9937 . . . . . 6 class 1
62cv 1482 . . . . . 6 class 𝑐
75, 6cfv 5888 . . . . 5 class (𝑐‘1)
8 c2 11070 . . . . . 6 class 2
98, 6cfv 5888 . . . . 5 class (𝑐‘2)
10 cevlf 16849 . . . . 5 class evalF
117, 9, 10co 6650 . . . 4 class ((𝑐‘1) evalF (𝑐‘2))
123cv 1482 . . . . . 6 class 𝑓
13 cc0 9936 . . . . . . . 8 class 0
1413, 6cfv 5888 . . . . . . 7 class (𝑐‘0)
15 c1stf 16809 . . . . . . 7 class 1stF
1614, 7, 15co 6650 . . . . . 6 class ((𝑐‘0) 1stF (𝑐‘1))
17 ccofu 16516 . . . . . 6 class func
1812, 16, 17co 6650 . . . . 5 class (𝑓func ((𝑐‘0) 1stF (𝑐‘1)))
19 c2ndf 16810 . . . . . 6 class 2ndF
2014, 7, 19co 6650 . . . . 5 class ((𝑐‘0) 2ndF (𝑐‘1))
21 cprf 16811 . . . . 5 class ⟨,⟩F
2218, 20, 21co 6650 . . . 4 class ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))
2311, 22, 17co 6650 . . 3 class (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1))))
242, 3, 4, 4, 23cmpt2 6652 . 2 class (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))))
251, 24wceq 1483 1 wff uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))))
Colors of variables: wff setvar class
This definition is referenced by:  uncfval  16874
  Copyright terms: Public domain W3C validator