Detailed syntax breakdown of Definition df-xps
| Step | Hyp | Ref
| Expression |
| 1 | | cxps 16166 |
. 2
class
×s |
| 2 | | vr |
. . 3
setvar 𝑟 |
| 3 | | vs |
. . 3
setvar 𝑠 |
| 4 | | cvv 3200 |
. . 3
class
V |
| 5 | | vx |
. . . . . 6
setvar 𝑥 |
| 6 | | vy |
. . . . . 6
setvar 𝑦 |
| 7 | 2 | cv 1482 |
. . . . . . 7
class 𝑟 |
| 8 | | cbs 15857 |
. . . . . . 7
class
Base |
| 9 | 7, 8 | cfv 5888 |
. . . . . 6
class
(Base‘𝑟) |
| 10 | 3 | cv 1482 |
. . . . . . 7
class 𝑠 |
| 11 | 10, 8 | cfv 5888 |
. . . . . 6
class
(Base‘𝑠) |
| 12 | 5 | cv 1482 |
. . . . . . . . 9
class 𝑥 |
| 13 | 12 | csn 4177 |
. . . . . . . 8
class {𝑥} |
| 14 | 6 | cv 1482 |
. . . . . . . . 9
class 𝑦 |
| 15 | 14 | csn 4177 |
. . . . . . . 8
class {𝑦} |
| 16 | | ccda 8989 |
. . . . . . . 8
class
+𝑐 |
| 17 | 13, 15, 16 | co 6650 |
. . . . . . 7
class ({𝑥} +𝑐 {𝑦}) |
| 18 | 17 | ccnv 5113 |
. . . . . 6
class ◡({𝑥} +𝑐 {𝑦}) |
| 19 | 5, 6, 9, 11, 18 | cmpt2 6652 |
. . . . 5
class (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ ◡({𝑥} +𝑐 {𝑦})) |
| 20 | 19 | ccnv 5113 |
. . . 4
class ◡(𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ ◡({𝑥} +𝑐 {𝑦})) |
| 21 | | csca 15944 |
. . . . . 6
class
Scalar |
| 22 | 7, 21 | cfv 5888 |
. . . . 5
class
(Scalar‘𝑟) |
| 23 | 7 | csn 4177 |
. . . . . . 7
class {𝑟} |
| 24 | 10 | csn 4177 |
. . . . . . 7
class {𝑠} |
| 25 | 23, 24, 16 | co 6650 |
. . . . . 6
class ({𝑟} +𝑐 {𝑠}) |
| 26 | 25 | ccnv 5113 |
. . . . 5
class ◡({𝑟} +𝑐 {𝑠}) |
| 27 | | cprds 16106 |
. . . . 5
class Xs |
| 28 | 22, 26, 27 | co 6650 |
. . . 4
class
((Scalar‘𝑟)Xs◡({𝑟} +𝑐 {𝑠})) |
| 29 | | cimas 16164 |
. . . 4
class
“s |
| 30 | 20, 28, 29 | co 6650 |
. . 3
class (◡(𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ ◡({𝑥} +𝑐 {𝑦})) “s
((Scalar‘𝑟)Xs◡({𝑟} +𝑐 {𝑠}))) |
| 31 | 2, 3, 4, 4, 30 | cmpt2 6652 |
. 2
class (𝑟 ∈ V, 𝑠 ∈ V ↦ (◡(𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ ◡({𝑥} +𝑐 {𝑦})) “s
((Scalar‘𝑟)Xs◡({𝑟} +𝑐 {𝑠})))) |
| 32 | 1, 31 | wceq 1483 |
1
wff
×s = (𝑟 ∈ V, 𝑠 ∈ V ↦ (◡(𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ ◡({𝑥} +𝑐 {𝑦})) “s
((Scalar‘𝑟)Xs◡({𝑟} +𝑐 {𝑠})))) |