| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df3an2 | Structured version Visualization version GIF version | ||
| Description: Express triple-and in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 25-Jul-2020.) |
| Ref | Expression |
|---|---|
| df3an2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ¬ (𝜑 → (𝜓 → ¬ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1039 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | df-an 386 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ¬ ((𝜑 ∧ 𝜓) → ¬ 𝜒)) | |
| 3 | impexp 462 | . . 3 ⊢ (((𝜑 ∧ 𝜓) → ¬ 𝜒) ↔ (𝜑 → (𝜓 → ¬ 𝜒))) | |
| 4 | 2, 3 | xchbinx 324 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ¬ (𝜑 → (𝜓 → ¬ 𝜒))) |
| 5 | 1, 4 | bitri 264 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ¬ (𝜑 → (𝜓 → ¬ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |