![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfbi3OLD | Structured version Visualization version GIF version |
Description: Obsolete proof of dfbi3 994 as of 29-Oct-2021. (Contributed by NM, 27-Jun-2002.) (Proof shortened by Wolf Lammen, 3-Nov-2013.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
dfbi3OLD | ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xor 935 | . 2 ⊢ (¬ (𝜑 ↔ ¬ 𝜓) ↔ ((𝜑 ∧ ¬ ¬ 𝜓) ∨ (¬ 𝜓 ∧ ¬ 𝜑))) | |
2 | pm5.18 371 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)) | |
3 | notnotb 304 | . . . 4 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
4 | 3 | anbi2i 730 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ¬ ¬ 𝜓)) |
5 | ancom 466 | . . 3 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ (¬ 𝜓 ∧ ¬ 𝜑)) | |
6 | 4, 5 | orbi12i 543 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ↔ ((𝜑 ∧ ¬ ¬ 𝜓) ∨ (¬ 𝜓 ∧ ¬ 𝜑))) |
7 | 1, 2, 6 | 3bitr4i 292 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∨ wo 383 ∧ wa 384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |